Wednesday: 30 March, 2016

\

‘Oracle Insert Statements
for DBAs and Developers

Daniel A. Morgan

email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorganllg

twitter: @meta7solutions

i

——

Introduction

\\\\\\\’

Dan Morgan

* Principal Adviser: Forsythe Meta7
@ Oracle ACE Director

= More than 45 years technology experience
= First computer was an IBM 360/40 mainframe in 1970
= Fortran IV and Punch Cards

ﬁf Curriculum author and primary Oracle instructor at University of Washington
& Guest lecturer on Oracle at Harvard University
= Decades of hands-on SQL, PL/SQL, and DBA experience

= The "Morgan" behind Morgan's Library on the web
WWw.morganslibrary.org

= 10g, 11g, and 12c Beta tester
" Co-Founder Intl. GoldenGate Oracle Users Group
= Contact email: dmorgan@forsythe.com

META; Solutions for the Red Stack

My Websites: Morgan's Library

Morgan's Libeary - =
Morgan®s Library e

International Oracle Events 2015-2016 Calendar
May Jun Jul Aug Sep Oct How Dec Jan }
The library is a spam-free on-line resource with code demos for DBAs and Developers.
If you would like to see new Oracle database funtionality added to the library ... just email us.
Oracle 12.1.0.2.0 has been released and new features will be showing up for many weeks.
The first updates have already been made.

Hon ' MadDog Morgan Training Events and Travels Oracle Events

o ™ 10UG, Chicago, Iilinois - Mar 10

Resources

Lbeary « M UTOUG, Salt Lake City, Utah - Mar 11.12 L2 S
HowCan 2 o 5 QUGN Oslo, Norway - Mar 1214 5 ¥
o ™ Collaborate, Las Veqas, Nevada - Apr 1216 -

o ™ nYoUuG, Now York, NY - May 18
. GLOC, Cleveland, Ohio - May 19-20

Next Event: 27 January, Redwood Shores, CA Click on the map to find an event near you
Library News ACE News
* Morgan's Blog ’

@ Would you like to become an Oracle ACE? A

® Join the Western Washi n OUG .
Learn more about becoming an ACE

® Morgan's Oracle Podcast
| * US Govt Mil. STIGs (Security Checklists) ® ACE Directory
® Bryn Llewellyn's PL/ISQL White Paper * ACE Google Map
. 's Editioni i * ACE Program
aboard USA-71 ® Explain Plan White Pa ® Stanley's Bl

¢ A ORACLE' ~ Congu_!ulaﬁons. to our newes.l
ACE Director * ACE Director Jim Czuprynski

”’ AEDECNT SANS FRONTMRES
DOCTORS WITHOUT BORDERS

META; Solutions for the Red Stack

What Meta7 Brings To The Party

* The "Oracle Only" division of Forsythe dedicated to the Oracle Red Stack

= Ateam of skilled professionals with
= Extensive experience across multiple industries

= Deep specialization in core Oracle technologies ORACLE" :latinum
= Hardware Artner
= Licensing

= Professional Services
= 0% off-shoring: All work performed by US residents

= Reliable on-time and on-budget delivery
= Corporate headquarters in Chicago, lllinois
= New, State-of-the-Art Technology Evaluation Center

= Secure hosting and Managed Services in our own Tier 3 data center on the
same power grid and fibre as O'Hare airport

= Flexible financial support

META; Solutions for the Red Stack

\\\\\\\’

al

What Meta7 Brings To The Party ¢

Product Area Strategy

Cloud Solutions
Database
Database
Database
Database
Database
Engineered Systems
Engineered Systems
Industries
Servers and Storage Systems
Servers and Storage Systems
Servers and Storage Systems
Servers and Storage Systems
Servers and Storage Systems
Servers and Storage Systems
Servers and Storage Systems
Servers and Storage Systems
Servers and Storage Systems
Servers and Storage Systems

Oracle Optimized Solution for Enterprise Cloud Infrastructure
Oracle Database 11g

Oracle Database 11g Data Warehousing

Oracle Database 12c

Oracle Enterprise Manager 12c

Oracle Real Application Clusters 119

Oracle Database Appliance Specialization

Oracle Exadata Database Machine

Professional Services

Oracle Linux 5

Oracle Solaris 10

Oracle Solaris 11

Oracle VM 3

Oracle ZFS Storage

SPARC Enterprise Entry-Midrange M-Series Servers
SPARC T2 and T3-Based Servers

SPARC T4-Based Servers

SPARC T5-Based Servers

Sun ZFS Storage Appliance

META; Solutions for the Red Stack

\\\\\\\‘

Zero Downtime Database
Migrations with GoldenGate

—

|+ e AR 2
R

P | ! (e e s LN
o r SR ;".“""- w2
28 A T - ¥

. - o 9

> 20
o~ - .
‘".f"\ - P -~
Pttt g e Sepiels. Vmpe gm0 W% Y, 5 - :
- Q'&-‘.&-“.o- —— . -y o
-a ——
=¥
S

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949

% ;‘ ; skype: damorganllg
%‘ N twitter: @meta7solutions

N

- iy

)

se
LS 7?7

N
!
. -'- . y

r

'—
1
[
f

]

b - - -

B® o
," - T -) = N e - -
A p oPonols
—y o - -, — - - e - Sa— .
> i - bl o
e |) A = = 3] 1
— [- . = - e
.-a.-a_lﬁ! v d o Ld e LD CD 20,
EREEe S - ‘
) 1‘— R - .- .- g =
> & - - e >
. 2) - !] W/ |) : - PP
.D.uu e DIR R = =
S o 5 e] - e - - » _
s - e CAC Y D & W T
- - - - ot o
abBcBeReogas
-) .) -y - - 2
- p ' ’ - A) o
| : - - -_ - i _ _
’ cd e= ()= Sy s C

y
!
?
1 4
v
1 ’
‘ 2
1
!
M
U
\

t

C

t To

Ins

yaYor=

gan

gan@fors

~ mobile: +1 206-669-294¢

skype: damorganllg

Daniel A. Mor
email: dmor
Atwitter: @metars

-
= I

il VLDBs and
Database

P

Daniel A. Mo
email: dmorgan@forsythe.com
mobile: +1 206-669-2949

. skype: damorganllg
—’ twitter: @ meta7solutions 0»

tapase Reriormance

dmorgan@forsythe.com
1 206-669-2949
damorganllg

, o‘:' eta7solutions

S

-
L

"

-

3

™

T Fire Fighting,,

”
-

N~

Travel Log: 2010

META; Solutions for the Red Stack

12

Travel Log: 2013

META; Solutions for the Red Stack

13

2014

Travel Log

14

Solutions for the Red Stack

™

META/

Travel Log: 2014

o P i
(03w’ Fta N el

META; Solutions for the Red Stack

Travel Log: 2014

-) TR »
L4 Y -
C %% % &

N e

META; Solutions for the Red Stack

16

Content Density Warning

Take Notes ... Ask Questions

META; Solutions for the Red Stack

17

Why Am | Focusing On INSERT Statements?

Because no one else is

Because Oracle University doesn't teach this material

Because there are 17 pages in the 12c docs on INSERT statements
Because almost no one knows the full syntax for basic DML statements

Because we have now spent more than 30 years talking about performance
tuning and yet the number one conference and training topic remains tuning
which proves that we need to stop focusing on edge cases and focus, instead,
on the basics

Because explain plans, AWR Reports, and trace files will never fix a problem if
you don't know the full range of syntaxes available

Because the best way to achieve high performance is to choose technigues
that reduce resource utilization

META; Solutions for the Red Stack 18

Insert Statements

SQL DML?

= DML stands for Data Manipulation Language

= DML is a direct reference to the following SQL statements
= INSERT
= UPDATE
= DELETE
= MERGE

META; Solutions for the Red Stack

20

SQL INSERT Statement Topics @:2)

= Basic Insert

= INSERT WHEN

= INSERT ALL

= INSERT ALL WHEN

= INSERT FIRST WHEN

= INSERTINTO ASELECT STATEMENT
= INSERT WITH CHECK OPTION

= View Inserts

= Editioning View Inserts

= Partitioned Table Insert

META; Solutions for the Red Stack

21

SQL INSERT Statement Topics 2

= Tables with Virtual Columns Insert
= Tables with Hidden Columns Insert
= Create Table As Inserts

= Nested Table Inserts

= VARRAY Table Inserts

= MERGE Statement Insert

META; Solutions for the Red Stack

22

PL/SQL INSERT Statement Topics

» Record inserts

= FORALL INSERTs

= FORALL MERGE Inserts

= LOB Inserts

= DBMS_SQL Dynamic Inserts

= Native Dynamic SQL Inserts

» RETURNING Clause with a Sequence

= RETURNING Clause with an Identity Column

META; Solutions for the Red Stack

23

Performance Tuning INSERT Statement Topics

* Too Many Columns

= Column Ordering

= Aliasing and Fully Qualified Names
= Implicit Casts

= APPEND hint

= APPEND_VALUES hint

» DBMS_ERRLOG built-in package
= CHANGE DUPKEY ERROR INDEX hint
= IGNORE ON DUPKEY INDEX hint

= DBMS_STATS
= |nsert Statement Most Common Error

META; Solutions for the Red Stack

24

SQL Insert Statements

Basic INSERT Statement .2

» Use this syntax to perform inserts into a single column in a heap, global
temporary, 10T, and most partitioned tables

INSERT INTO <table_pame>
(<column_name>)

VALUES

(<value>) ;

CREATE TABLE state (
state_abbrev VARCHAR2(2)) ;

INSERT INTO state
(state_abbrev)
VALUES

('NY'");

COMMIT ;

SELECT * FROM state;

META; Solutions for the Red Stack

Basic INSERT Statement 2

» Use this syntax to perform inserts into a single column in a heap, global
temporary, 10T, and most partitioned tables

INSERT INTO <table_pame>

(<column name>, <column name> [,...])
VALUES

(<value>, <value> [,<value>]);

CREATE TABLE state (
state_abbrev VARCHAR2 (2),
state_name VARCHAR2 (30)) ;

INSERT INTO state
(state_abbrev, state_ name)
VALUES

('NY', 'New York');
COMMIT;

SELECT * FROM state;

META; Solutions for the Red Stack

27

INSERT WHEN

= Use this syntax to conditionally insert rows into multiple tables

INSERT

WHEN (<condition>) THEN
INTO <table name> (<column_ list>)
VALUES (<values_list>)

WHEN (<condition>) THEN
INTO <table name> (<column_ list>)
VALUES (<values_list>)

ELSE
INTO <table_name> (<column_list>)
VALUES (<values_list>)

SELECT <column_list> FROM <table_ name>;

INSERT

WHEN (deptno=10) THEN
INTO emp 10 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

WHEN (deptno=20) THEN
INTO emp 20 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

WHEN (deptno=30) THEN
INTO emp 30 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

ELSE
INTO leftover (empno,ename, job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

SELECT * FROM emp;

META; Solutions for the Red Stack

INSERT ALL

= Use this syntax to unconditionally insert data into multiple tables

* Note that columns can go into one target table, multiple target tables, or all
target tables

INSERT ALL
INTO <table name> VALUES <column name list)
INTO <table name> VALUES <column name list)

<SELECT Statement>;

INSERT ALL
INTO ap _cust VALUES (customer_ id, program id, delivered date)
INTO ap_orders VALUES (order_date, program id)
SELECT program id, delivered date, customer id, order_date
FROM airplanes;

META; Solutions for the Red Stack

29

INSERT ALL WHEN

= With "ALL", the default value, the database evaluates each WHEN clause

sequentially and can inserts with each row multiple times if there are multiple
matches

INSERT ALL

WHEN (<condition>) THEN
INTO <table name> (<column_ list>)
VALUES (<values_ list>)

WHEN (<condition>) THEN
INTO <table name> (<column_ list>)
VALUES (<values_1list>)

ELSE
INTO <table name> (<column list>)
VALUES (<values_list>)

SELECT <column list> FROM <table name>; INSERTS ALL
- - WHEN (deptno=10) THEN

INTO emp 10 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)
WHEN (deptno=20) THEN
INTO emp 20 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)
WHEN (deptno<=30) THEN
INTO emp_ 30 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)
ELSE
INTO leftover (empno,ename, job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)
SELECT * FROM emp;

META; Solutions for the Red Stack

INSERT FIRST WHEN

= With "FIRST" the database evaluates each WHEN clause in the order in which
It appears in the statement and only performs an insert for the first match

INSERT FIRST

WHEN <condition> THEN

INTO <table_ name> VALUES <column name list)
INTO <table_ name> VALUES <column name list)

<SELECT Statement>;

INSERT FIRST
WHEN customer id < 'I' THEN

INTO cust_ah

VALUES (customer id, program id, delivered date)
WHEN customer id < 'Q' THEN

INTO cust_ip

VALUES (customer id, program id, delivered date)
WHEN customer id > 'PZZZ' THEN

INTO cust gz

VALUES (customer id, program id, delivered date)
SELECT program id, delivered date, customer id, order_date
FROM airplanes;

META; Solutions for the Red Stack

31

INSERT Into a SELECT Statement

» Use this syntax to INSERT rows into a table a part of a SELECT statement
from itself or one or more different tables

INSERT INTO <table_ name>
(<SELECT Statement>) ;

CREATE TABLE state (

zip_code VARCHAR2 (5) NOT NULL,
state_abbrev VARCHAR2 (2) NOT NULL,
city name VARCHAR2 (30)) ;

INSERT INTO (
SELECT deptno, dname, loc
FROM dept)
VALUES (99, 'TRAVEL', 'SEATTLE') ;

META; Solutions for the Red Stack

INSERT with Check Option
= Use this syntax to limit inserted rows to only those that pass CHECK OPTION
validation

INSERT INTO (
<SQL statement> WITH CHECK OPTION)

VALUES
(value_list);

INSERT INTO (
SELECT deptno, dname, loc

FROM dept
WHERE deptno < 30 WITH CHECK OPTION)
VALUES (99, 'TRAVEL', 'SEATTLE') ;

META; Solutions for the Red Stack

33

INSERTINng into a View

= Evaluate whether a view column is insertable

» Views with aggregations, CONNECT BY, and other syntaxes may not be
Insertable

desc cdb_updatable_ columns

SELECT cuc.con_id, cuc.owner, cuc.insertable, COUNT (*)
FROM cdb updatable_ columns cuc
WHERE (cuc.con_id, cuc.owner, cuc.table name) IN
(SELECT cv.con_id, cv.owner, cv.view_name
FROM cdb_views cv)
GROUP BY cuc.con_id, cuc.owner, cuc.insertable
ORDER BY 1,2,3;

CON_ID OWNER INS COUNT (*)
2 ORDSYS NO 4
2 ORDSYS YES 4
2 SYS NO 45190
2 SYS YES 22415
2 SYSTEM NO 172
2 SYSTEM YES 14
2 WMSYS NO 736
2 WMSYS YES 160

META; Solutions for the Red Stack

34

INSERTINng into an Editioning View

= All editioning views are insertable ... but be sure you are in the correct edition

SQL>

SQL>
2
3

View

SQL>

CREATE EDITION demo_ed;

CREATE OR REPLACE EDITIONING VIEW test AS
SELECT program id, line number

FROM airplanes;

created.

ALTER SESSION SET EDITION=demo ed;

Session altered.

SQL>

CREATE OR REPLACE EDITIONING VIEW test AS

SELECT line number, program id

FROM airplanes;

created.

SELECT * FROM user_editioning views_ae;

NAME TABLE NAME EDITION NAME

ATRPLANES ORASBASE
ATRPLANES DEMO_ED

META; Solutions for the Red Stack

35

INSERTINng into a Partitioned Table

= With HASH, LIST, and RANGE partitioning any INSERT statement will work
= With Partition by SYSTEM you must name the partition

CREATE TABLE syst part (
tx id NUMBER(5),
begdate DATE)

PARTITION BY SYSTEM (
PARTITION pl,

PARTITION p2,

PARTITION p3);

INSERT INTO syst part VALUES (1, SYSDATE-10);
*
ERROR at line 1:
ORA-14701: partition-extended name or bind variable must be used
for DMLs on tables partitioned by the System method
INSERT INTO syst part PARTITION (pl) VALUES (1, SYSDATE-10) ;
INSERT INTO syst part PARTITION (p2) VALUES (2, SYSDATE) ;
INSERT INTO syst part PARTITION (p3) VALUES (3, SYSDATE+10) ;

SELECT * FROM syst part PARTITION (p2);

META; Solutions for the Red Stack

INSERTINng into a Table With Virtual Columns

» Virtual columns will appear in a DESCRIBE statement but
you cannot insert values into them

CREATE TABLE vcol (

salary NUMBER (8) ,

bonus NUMBER (3) ,

total comp NUMBER(10) AS (salary+bonus));

desc vcol

SELECT column_id, column name, virtual column
FROM user_tab cols
WHERE table name = 'VCOL'

INSERT INTO vcol

(salary, bonus, total_comp)
VALUES

(1,2,3);

INSERT INTO wvcol
(salary, bonus)
VALUES

(1,2);

SELECT * FROM vcol;

META; Solutions for the Red Stack

INSERTINng into a Table with Invisible Columns

* |nvisible columns will not appear in a DESCRIBE statement but you can insert
Into them directly

CREATE TABLE vis (
rid NUMBER,
testcol VARCHAR2 (20)) ;

CREATE TABLE invis (
rid NUMBER,
testcol VARCHAR2 (20) INVISIBLE) ;

desc vis

desc invis

SELECT table name, column name, hidden column
FROM user_ tab cols -- not found in
user tab columns

WHERE table name like '%VIS';

INSERT INTO invis

(rid, testcol)

VALUES

(1, 'TEST');

SELECT * FROM invis;

SELECT rid, testcol FROM invis;

META; Solutions for the Red Stack

CREATE TABLE as an INSERT Statement

= Use this syntax to create a new table as the result of a SELECT statement
from one or more source tables

CREATE TABLE <tab1e_name> AS
<SELECT Statement>;

CREATE TABLE column_subset AS
SELECT coll, col3, col5
FROM servers;

desc column_subset

SELECT COUNT (*)
FROM column_subset;

META; Solutions for the Red Stack

S0

Nested Table Insert

= Cast column values using the object column's data type

CREATE OR REPLACE NONEDITIONABLE TYPE CourselList AS TABLE OF VARCHAR2 (64) ;
/

CREATE TABLE department (

name VARCHAR2 (20) ,

director VARCHAR2 (20),

office VARCHAR2 (20) ,

courses Courselist)

NESTED TABLE courses STORE AS courses_tab;

INSERT INTO department
(name, director, office, courses)
VALUES
('English', 'Tara Havemeyer',6 'Breakstone Hall 205', CourselList(
'Expository Writing',
'Film and Literature'’',
'Modern Science Fiction',
'Discursive Writing',
'Modern English Grammar',
'Introduction to Shakespeare',
'Modern Drama',
'The Short Story',
'The American Novel'));

META; Solutions for the Red Stack

VARRAY Table Insert

= Cast column values using the VARRAY column's data type

CREATE OR REPLACE TYPE ProjectList AS VARRAY (50) OF Project;
/

CREATE TABLE department (
dept_id NUMBER(2),

dname VARCHAR2 (15) ,
budget NUMBER (11,2),
projects ProjectlList);

INSERT INTO department

(dept_id, dname, budget, projects)

VALUES

(30, 'Accounting', 1205700,

ProjectList (Project(l, 'Design New Expense Report', 3250),
Project (2, 'Outsource Payroll',6 12350),

Project (3, 'Evaluate Merger Proposal', 2750),

Project (4, 'Audit Accounts Payable', 1425)));

META; Solutions for the Red Stack

MERGE Statement Insert

» Use MERGE statements where an insert or other DML action is conditioned
on the results of a SELECT statement result match

MERGE INTO bonuses b
USING (
SELECT employee_ id, salary, dept no
FROM employee
WHERE dept no =20) e
ON (b.employee id = e.employee id)
WHEN MATCHED THEN
UPDATE SET b.bonus = e.salary * 0.1
DELETE WHERE (e.salary < 40000)
WHEN NOT MATCHED THEN
INSERT (b.employee id, b.bonus)
VALUES (e.employee id, e.salary * 0.05)
WHERE (e.salary > 40000) ;

META; Solutions for the Red Stack

42

PL/SQL Insert Statements

Record Inserts

= Use this syntax to insert based on an array that matches the target table
rather than named individual columns

= Adding a new column to the table will not break the statement

CREATE TABLE t AS
SELECT table name, tablespace name
FROM all tables;

SELECT COUNT (*)
FROM t;

DECLARE
trec tSROWTYPE;

BEGIN
trec.table name := 'NEW';
trec.tablespace name := 'NEW_TBSP';

INSERT INTO t
VALUES trec;

COMMIT;
END;
/

SELECT COUNT (*) FROM t;

META; Solutions for the Red Stack

44

FORALL INSERTS @3

= Use this syntax to greatly enhance
performance but be sure you
understand the concept of DIRECT
LOAD INSERTs

= With this syntax | can insert
500,000 rows per second on
my laptop

= |Learn

Limits Clause

Save Exceptions
Partial Collections
Sparse Collections
In Indices Of Clause

META; Solutions for the Red Stack

©

B

E
/

REATE OR REPLACE PROCEDURE fast way AUTHID CURRENT USER IS
TYPE myarray IS TABLE OF parent%ROWTYPE;
1 data myarray;

CURSOR r IS
SELECT part num, part name
FROM parent;

BatchSize CONSTANT POSITIVE := 1000;
EGIN
OPEN «r;
LOOP
FETCH r BULK COLLECT INTO l_data LIMIT BatchSize;

FOR j IN 1 .. 1 data.COUNT LOOP
1 data(j) .part_num := 1 data(j) .part_num * 10;
END LOOP;

FORALL i IN 1..1 data.COUNT
INSERT INTO child VALUES 1 data(i);

EXIT WHEN 1 data.COUNT < BatchSize;
END LOOP;
COMMIT;
CLOSE r;
ND fast way;

45

FORALL INSERTS 3

= Use this syntax to greatly enhance
performance but be sure you
understand the concept of DIRECT
LOAD INSERTs

= With this syntax | can insert
500,000 rows per second on
my laptop
= |Learn
= Limits Clause
= Save Exceptions
= Partial Collections
= Sparse Collections
* In Indices Of Clause

META; Solutions for the Red Stack

CREATE OR REPLACE PROCEDURE fast_way AUTHID CURRENT USER IS
TYPE PartNum IS TABLE OF parent.part num%TYPE
INDEX BY BINARY INTEGER;

pnum_t PartNum;

TYPE PartName IS TABLE OF parent.part name3TYPE
INDEX BY BINARY INTEGER;

pnam_t PartName;

BEGIN
SELECT part num, part name
BULK COLLECT INTO pnum_t, pnam t
FROM parent;

FOR i IN pnum t.FIRST .. pnum_t.LAST LOOP

pnum_t(i) := pnum t(i) * 10;
END LOOP;
FORALL i IN pnum t.FIRST .. pnum_t.LAST

INSERT INTO child
(part_num, part name)
VALUES
(pnum_t (i), pnam_t(i));
COMMIT;

END fast way;

/

46

FORALL INSERTS @3

Use this syntax to greatly enhance
performance but be sure you
understand the concept of DIRECT
LOAD INSERTs

= With this syntax | can insert

500,000 rows per second on
my laptop

Learn

= Limits Clause

= Save Exceptions

= Partial Collections

= Sparse Collections

* |nIndices Of Clause

META; Solutions for the Red Stack

CREATE OR REPLACE PROCEDURE fast way AUTHID CURRENT USER IS
TYPE parent rec IS RECORD (

part_num dbms_sql.number table,

part name dbms_sql.varchar2 table);

p_rec parent rec;

CURSOR c IS
SELECT part num, part name FROM parent;

1 done BOOLEAN;
BEGIN
OPEN c;
LOOP
FETCH c BULK COLLECT INTO p_rec.part num, p rec.part name
LIMIT 500;
1l done := c3%NOTFOUND;

FOR i IN 1 .. p rec.part num.COUNT LOOP
p_rec.part num(i) := p_rec.part num(i) * 10;
END LOOP;

FORALL i IN 1 .. p rec.part num.COUNT
INSERT INTO child

(part_num, part name)

VALUES

(p_rec.part num(i), p_rec.part name(i))

EXIT WHEN (1_done);
END LOOP;
COMMIT;
CLOSE c;
END fast way;
/

a7

FORALL MERGE Inserts

= Use this syntax to execute a MERGE statement using data in an array data
(most likely selected using BULK COLLECT)

CREATE OR REPLACE PROCEDURE forall merge AUTHID CURRENT USER IS
TYPE ridVal IS TABLE OF forall tgt.rid3%TYPE
INDEX BY BINARY INTEGER;
1 data ridval;
BEGIN
SELECT rid BULK COLLECT INTO 1 data
FROM forall src;

FORALL i IN 1 data.FIRST .. 1 data.LAST
MERGE INTO forall tgt ft
USING (

SELECT rid

FROM forall src fs

WHERE fs.rid = 1 data(i)) al
ON (al.rid = ft.rid)
WHEN MATCHED THEN

UPDATE SET upd = 'U'
WHEN NOT MATCHED THEN

INSERT (rid, ins, upd)

VALUES (1_data(i), 'I', NULL);
COMMIT;
END forall merge;

/

META; Solutions for the Red Stack

LOB Insert

= When creating LOB objects be .. cite srus;

dst file BLOB;

sure to use SecureFiles and be isntile sary_mvrecer;

retval VARCHARZ2 (30) ;

Sure tha't you underStand BEEJI:I: file := bfilename ('CTEMP' 'sphere.mpg') ;
PCTVERSION, CHUNK, and
other storage parameters e

(1, EMPTY BLOB())

u Failure to UnderStand hOW RETURNING bcol INTO dst file;
LOBSs process undo can result

INTO dst file

IN massive waste of space EROM sct

FOR UPDATE;

dbms lob.fileopen(src_file, dbms lob.file readonly) ;

lgh file := dbms_lob.getlength(src_file);

dbms_lob.loadFromFile (dst_file, src file, lgh file);

UPDATE sct
SET bcol = dst file
WHERE rid = 1;

dbms_lob.setContentType (dst_file, 'MPG Movie');
retval := dbms lob.getContentType (dst file) ;
dbms_output.put_ line (retval) ;

dbms_lob.fileclose (src_file) ;
END load file;
/

META; Solutions for the Red Stack

49

DBMS_ SQL Dynamic Inserts

= DBMS_ SQL is the legacy implementation of dynamic SQL in the Oracle
database introduced in version 7

CREATE OR REPLACE PROCEDURE single row_insert(cl NUMBER, c2 NUMBER, r OUT NUMBER) IS

c NUMBER;
n NUMBER;
BEGIN
c := dbms_sql.open_cursor;
dbms_sql.parse(c, 'INSERT INTO tab VALUES (:bndl, :bnd2) ' || 'RETURNING cl*c2 into :bnd3', 2);

dbms_sql.bind variable(c, 'bndl', cl);
dbms_sql.bind variable(c, 'bnd2', c2);
dbms_sql .bind variable(c, 'bnd3', r);

n := dbms_sql.execute(c);

dbms_sql.variable value(c, 'bnd3', r); -- get value of outbind
dbms_sql.close_cursor(c) ;
END single_ row_insert;

/

META; Solutions for the Red Stack

50

Native Dynamic SQL Inserts

= Native Dynamic SQL has largely replaced DBMS_SQL as it is robust and
more easily coded

BEGIN

FOR i IN 1 .. 10000

LOOP
EXECUTE IMMEDIATE 'INSERT INTO t VALUES (:x)'
USING i;

END LOOP;

END;
/

META; Solutions for the Red Stack

RETURNING Clause with a Sequence

= Use this syntax to return values from an insert statement unknown to the
program inserting the row

INSERT INTO <table name>
(column list)
VALUES
(values_list)
RETURNING <value name>
INTO <variable name>;

DECLARE
X emp.empno3TYPE;
r rowid;
BEGIN
INSERT INTO emp
(empno, ename)
VALUES
(seq_emp .NEXTVAL, 'Morgan')
RETURNING rowid, empno
INTO r, x;

dbms_ output.put line(r);
dbms_ output.put line (x) ;
END ;
/

META; Solutions for the Red Stack

52

RETURNING Clause with an Identify Column

= Use this syntax to return values from an insert statement unknown to the
program inserting the row

CREATE TABLE idcoltab (
rec_id NUMBER GENERATED ALWAYS AS IDENTITY,
coltxt VARCHAR2 (30)) ;

DECLARE
rid idcoltab.rec_id3%TYPE;
BEGIN
INSERT INTO idcoltab
(coltxt)
VALUES
('Morgan')
RETURNING rec_id
INTO rid;

dbms_output.put_line(rid);
END;
/

META; Solutions for the Red Stack

53

RETURNING Clause with Native Dynamic SQL

= Use this syntax to return values from an insert statement created using Native
Dynamic SQL

DECLARE
sql stmt VARCHAR2 (128) ;
dno dept ret.deptno%TYPE;
BEGIN
sql _stmt := 'INSERT INTO dept ret (deptno, dname, location) ' ||
'"VALUES (seq.NEXTVAL, ''PERSONNEL'', ''SEATTLE'') ' ||
'RETURNING deptno INTO :retval';
EXECUTE IMMEDIATE sql_stmt RETURNING INTO dno;
dbms output.put line (TO_CHAR(dno)) ;
END ;
/

META; Solutions for the Red Stack

Performance Tuning Insert Statements

Considerations

= Table structure
= |ndexes
= Triggers

» [tis always more efficient if you code it right once rather than making the
database fix it thousands or millions of times

META; Solutions for the Red Stack

56

Too Many Columns

Oracle claims that a table can contain up to 1,000 columns: It is not true. No
database can do 1,000 columns no matter what their marketing claims may be

The maximum number of real table columns is 255

Break the 255 barrier and optimizations such as advanced and hybrid
columnar compression no longer work

A 1,000 column table is actually four segments joined together behind the
scenes just as a partitioned table appears to be a single segment but isn't

Be suspicious of any table with more than 50 columns. At 100 columns it is
time to take a break and re-read the Codd-Date rules on normalization

Think vertically not horizontally

Be very suspicious of any table with column names in the form "SPARE1",
"SPARE2","..."

The more columns a table has the more cpu is required when accessing

columns to the I'ight (as the table is displayed in a SELECT * query ... or at the bottom if the table is
displayed by a DESCribe)

META; Solutions for the Red Stack

57

Column Ordering @2

= Computers are not humans and tables are not paper forms

= CBO's column retrieval cost
= QOracle stores columns in variable length format
» Eachrow is parsed in order to retrieve one or more columns

= Each subsequently parsed column introduces a cost of 20 cpu cycles regardless of
whether it is of value or not

» These tables will be accessed by person_id or state: No one will ever put the
address2 column into the WHERE clause as a filter ... they won't filter on

middle initial either

CREATE TABLE customers (
person_id NUMBER,

first name VARCHAR2(30) NOT NULL,
middle init VARCHAR2(2),

last_pame VARCHAR2 (30) NOT NULL,
addressl VARCHAR2 (30) ,

address2 VARCHAR2 (30) ,
city VARCHAR2 (30) ,
state VARCHAR2 (2)) ;

Common Design

CREATE TABLE customers (
person_id NUMBER,

last name VARCHAR2 (30)
state VARCHAR2 (2)
city VARCHAR2 (30)

first name VARCHAR2(30)

addressl VARCHAR2 (30) ,
address2 VARCHAR2 (30) ,
middle init VARCHAR2(2)) ;

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

Optimized Design

META; Solutions for the Red Stack

58

Column Ordering 2

= Proof column order matters

CREATE TABLE read test AS

SELECT *

FROM apex 040200.wwv_flow page plugs
WHERE rownum = 1;

SQL> explain plan for
2 select * from read test;

PLAN TABLE OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
| 0 | SELECT STATEMENT | | 1| 214K| 2 (0) | 00:00:01 |
[1 | TABLE ACCESS FULL| READ TEST | 1| 214K | 2 (0) | 00:00:01 |

-- fetch value from column 1

Final cost for query block SEL$1 (#0) - All Rows Plan:
Best join order: 1
Cost: 2.0002 Degree: 1 Card: 1.0000 Bytes: 13
Resc: 2.0002 Resc_io: 2.0000 Resc cpu: 7271
Resp: 2.0002 Resp io: 2.0000 Resc cpu: 7271

-- fetch value from column 193

Final cost for query block SEL$1 (#0) - All Rows Plan:
Best join order: 1
Cost: 2.0003 Degree: 1 Card: 1.0000 Bytes: 2002
Resc: 2.0003 Resc_io: 2.0000 Resc cpu: 11111
Resp: 2.0003 Resp_io: 2.0000 Resc cpu: 11111

META; Solutions for the Red Stack

59

Aliasing and Fully Qualified Names

= \When you do not use fully qualified names Oracle must do the work for you
* You write code once ... the database executes it many times

SELECT DISTINCT s.srvr_id
FROM servers s, serv_inst i
WHERE s.srvr id = i.srvr_ id;

SELECT DISTINCT s.srvr_id
FROM uwclass.servers s, uwclass.serv _inst i
WHERE s.srvr id = i.srvr id;

META; Solutions for the Red Stack

60

Implicit Casts

= Code that does not correctly define data types will either fail to run or run very
iInefficiently

The following example shows both the correct way and the incorrect way to
work with dates. The correct way Is to perform an explicit cast

SQL> create table t (
2 datecol date) ;

Table created.

SQL> insert into t wvalues ('01-JAN-2012"');

1 row created.

SQL> insert into t values (TO _DATE('01-JAN-2012"')) ;

1l row created.

META; Solutions for the Red Stack

61

Jonathan Lewis' Rules for Hints

1. Don't
2. If you must use hints, then assume you've used them incorrectly

3. On every patch or upgrade to Oracle, assume every piece of hinted SQL is going to do
the wrong thing

Because of (2) above; you've been lucky so far, but the patch/upgrade lets you
discover your mistake

4. Everytimeyou apply some DDL to an object that appears in a piece of hinted SQL
assume that the hinted SQL is going to do the wrong thing

Because of (2) above; you've been lucky so far, but the structural change lets you
discover your mistake

META; Solutions for the Red Stack 62

APPEND Hint

» The APPEND hint enables direct-path INSERT if the database is running in
serial mode. The database is in serial mode if you are not using Enterprise

Edition. Conventional INSERT is the default in serial mode, and direct-path
INSERT Iis the default in parallel mode

» In direct-path INSERT data is appended above the high-water mark potentially
Improving performance

INSERT /*+ APPEND */ INTO t
SELECT * FROM servers;

META; Solutions for the Red Stack

63

APPEND_VALUES Hint @2

Use this new 12c hint

Instructs the optimizer to
use direct-path INSERT
with the VALUES clause

If you do not specify this
hint, then conventional
INSERT is used

This hint is only
supported with the
VALUES clause of the
INSERT statement

If you specify it with an
Insert that uses the
subguery syntax it is
ignored

META; Solutions for the Red Stack

SQL> EXPLAIN PLAN FOR
2 INSERT INTO t
3 VALUES
4 ('XYZ');

SQL> SELECT * FROM TABLE (dbms_xplan.display) ;

SQL> EXPLAIN PLAN FOR
2 INSERT /*+ APPEND VALUES */ INTO t
3 VALUES
4 ('XYZ');

SQL> SELECT * FROM TABLE (dbms_xplan.display) ;

| Bytes | Cost (%CPU) | Time |

INSERT STATEMENT | I

LOAD AS SELECT | T [| | I I
BULK BINDS GET | | |

| Name | Rows

CHANGE_DUPKEY_ERROR_INDEX Hint

= Use this hint to unambiguously identify a unique key violation for a specified
set of columns or for a specified index

= When a unique key violation occurs for the specified index, an ORA-38911
error Is reported instead of an ORA-00001

INSERT /*+ CHANGE DUPKEY ERROR INDEX(T,TESTCOL) */ INTO t

(testcol)
VALUES
('Aa");

META; Solutions for the Red Stack

65

IGNORE_ON_DUPKEY_INDEX Hint

» This hint applies only to single-table INSERT operations

» |t causes the statement to ignore a unigue key violation for a specified set of
columns or for a specified index

= When a unique key violation is encountered, a row-level rollback occurs and
execution resumes with the next input row

= |f you specify this hint when inserting data with DML error logging enabled,
then the unique key violation is not logged and does not cause statement
termination

INSERT /*+ IGNORE_ROW_ON DUPKEY INDEX(T,UC_T TESTCOL)) */ INTO t
(testcol)
VALUES

(1) ;

META; Solutions for the Red Stack

66

DBMS ERRLOG @

* Provides a procedure that enables creating an error logging table so that DML
operations can continue after encountering errors rather than performing an
abort and rollback

= Tables with LONG, CLOB, BLOB, BFILE, and ADT data types are not

supported
* LOG ERRORS effectively it turns CREATE TABLE t AS
array processing into single row SROM 211 tables
processing, so it adds an L =2
expense at the moment of ALTER TABLE t
inserting, even though it saves RO e (Grias, (e po
you the overhead of an array JETE PR
rollback if a duplicate gets R e e &
INnto the data (onathan Lewis) CHECK (blocks < 11);
INSERT /*+ APPEND */ INTO t
SELECT *
FROM all tables;

META; Solutions for the Red Stack

DBMS_ ERRLOG 2

exec
dbms_errlog.create_error log('T');

desc err$_t

INSERT /*+ APPEND */ INTO t
SELECT *

FROM all tables

LOG ERRORS

REJECT LIMIT UNLIMITED;

SELECT COUNT (*) FROM t;

COMMIT;

SELECT COUNT (*) FROM t;

SELECT COUNT (*) FROM err$_t;

set linesize 121

col table name format a30

col blocks format a7

col ora err mesg$ format a60
SELECT ora_err mesg$, table name,

blocks
FROM err$ t;

META; Solutions for the Red Stack

DBMS_ STATS: Statistics

= System Stats
» Fixed Object Stats
= Dictionary Stats

» Set stats for new partitions
so that when inserts take
place the optimizer knows
what you are inserting

META; Solutions for the Red Stack

SQL> exec dbms stats.gather system stats('INTERVAL', 15);

SQL> SELECT * FROM sys.aux stats$;

SYSSTATS INFO STATUS
SYSSTATS INFO DSTART
SYSSTATS INFO DSTOP
SYSSTATS INFO FLAGS
SYSSTATS MAIN CPUSPEEDNW
SYSSTATS MAIN IOSEEKTIM
SYSSTATS MAIN IOTFRSPEED
SYSSTATS MAIN SREADTIM
SYSSTATS MAIN MREADTIM
SYSSTATS MAIN CPUSPEED
SYSSTATS MAIN MBRC
SYSSTATS MAIN MAXTHR
SYSSTATS MAIN SLAVETHR

PVAL1

4096
3.862
1.362

2854

17

PVAL2

COMPLETED
05-27-2015 09:45
05-27-2015 09:51

69

DBMS_STATS: Processing Rate «2

Processing Rate collection is new as of version 12cR1

Besides the amount of work the optimizer also needs to know the HW
characteristics of the system to understand how much time is needed to
complete that amount of work

Consequently, the HW characteristics describe how much work a single
process can perform on that system, these are expressed as bytes per second
and rows per second and are called processing rates

As they indicate a system's capability it means you will need fewer processes
(which means less DOP) for the same amount of work as these rates go
higher; the more powerful a system is, the less resources you need to process
the same statement in the same amount of time

Processing rates are collected manually

SQL> exec dbms_stats.gather processing rate ('START', 20);

SQL> SELECT operation name, manual value, calibration value, default value
2 FROM vSoptimizer processing rate
3 ORDER BY 1;

META; Solutions for the Red Stack

70

DBMS_STATS: Processing Rate

OPERATION NAME MANUAL VAL CALIBRATIO DEFAULT VA
AGGR 1000.00000
ALL 200.00000
CPU 200.00000
CPU_ACCESS 200.00000
CPU_AGGR 200.00000
CPU_BYTES PER_SEC 1000.00000
CPU_FILTER 200.00000
CPU_GBY 200.00000
CPU_HASH_JOIN 200.00000
CPU_IMC BYTES PER SEC 2000.00000
CPU_IMC_ROWS_PER_SEC 2000000.00
CPU_JOIN 200.00000
CPU_NL_JOIN 200.00000
CPU_RANDOM_ACCESS 200.00000
CPU_ROWS_PER SEC 1000000.00000
CPU_SEQUENTIAL ACCESS 200.00000
CPU_SM_JOIN 200.00000
CPU_SORT 200.00000
HASH 200.00000
I0 200.00000
IO_ACCESS 200.00000
IO BYTES_PER SEC 200.00000
IO_IMC_ACCESS 1000.00000
IO_RANDOM ACCESS 200.00000
I0_ROWS_PER SEC 1000000.00000
IO_SEQUENTIAL ACCESS 200.00000
MEMCMP 500.00000
MEMCPY 1000.00000

SQL> exec dbms_stats.set processing rate('IO', 100);

META; Solutions for the Red Stack

71

INSERT Statement Most Common Error

= |f you do not name columns DDL can break your statement and not doing so
will use a less efficient code path

INSERT INTO <table name>

VALUES
(<comma separated value list>);

CREATE TABLE state (
state_abbrev VARCHAR2 (2),
state_ name VARCHARZ2 (30) ,
city name VARCHARZ2 (30)) ;

INSERT INTO state
(state_abbrev, state name)
VALUES

('"NY', 'New York');

INSERT INTO state
VALUES
('"NY', 'New York');

META; Solutions for the Red Stack

Wrap Up

Conclusion

= How comfortable are you with your knowledge of UPDATE and DELETE
statements?

= The most important principle in INSERT statements, and anything else in
Oracle is "do the least work"
= Minimize CPU utilization
= Minimize I/O
= Take the load off the storage array
= Off the HBA cards
= Off the SAN switch
= Off the Fibre

= Minimize network utilization
= Bandwidth
= Round Trips

= Minimize your memory footprint

META; Solutions for the Red Stack

74

*

ERROR at line 1:
ORA-00028: your session has been killed

Thank You
From Meta’

Daniel A. Morgan

email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorganllg

twitter: @meta7solutions

META/

A Division of Forsythe

