
Oracle Database Performance Tuning:

The Not SQL Option

1

The Not SQL Option

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorgan11g

Wednesday: 18 November, 2015

2

Introduction

Dan Morgan

� Principal Adviser: Forsythe Meta7

� Oracle ACE Director

� More than 45 years technology experience
� First computer was an IBM 360/40 mainframe in 1970

� Fortran IV and Punch Cards

� Curriculum author and primary Oracle instructor at University of Washington

� Guest lecturer on Oracle at Harvard University

� Decades of hands-on SQL, PL/SQL, and DBA experience

33

� Decades of hands-on SQL, PL/SQL, and DBA experience

� The "Morgan" behind Morgan's Library on the web
www.morganslibrary.org

� 10g, 11g, and 12c Beta tester

� Co-Founder Intl. GoldenGate Oracle Users Group

� Contact email: dmorgan@forsythe.com

My Websites: Morgan's Library

44

My Websites: International GoldenGate Oracle Users Group

55

Travel Log: 2010

66

Travel Log: 2013

77

Travel Log: 2014

88

Who Is Meta7?

� The "Oracle Only" division of Forsythe dedicated to the Oracle Red Stack

� A team of skilled professionals with
� Extensive experience across multiple industries

� Deep specialization in core Oracle technologies

� Hardware

� Licensing

� Professional Services

� Reliable on-time and on-budget delivery

99

� Corporate headquarters in Chicago, Illinois

� New, State-of-the-Art Technology Evaluation Center

� Secure hosting and Managed Services in our own Tier 3 data center on the
same power grid and fibre as O'Hare airport

� Flexible financial support

GoldenGate for Oracle DBAs
Zero Downtime Migrations

Manitoba Oracle Users GroupManitoba Oracle Users Group

10Tuesday: September 29, 2015

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorgan11g

Technical Briefing:Technical Briefing:
How Do You Safeguard the Database How Do You Safeguard the Database

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorgan11g

11

October 21, 2015

How Do You Safeguard the Database How Do You Safeguard the Database
Against Today’s Cyber Threats?Against Today’s Cyber Threats?

Database
Partitioning

12

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorgan11g

IT Fire Fighting

13

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorgan11g

Rhetorical Question

� If an operating room is not the place to experiment ...

1414

� Should you trying things for the first time on your operational systems?

Content Density Warning

1515

Take Notes ... Ask Questions

16

Mythology + Methodology

The #1 Database Performance Tuning Mythology

1717

This was from the worst performing Oracle Database I've seen since 2006

The #1 Database Performance Tuning Methodology

Guessing

1818

BAAG Comrades

Christian Antognini
Karl Arao
Mark Bobak
Ronald Bradford
Wolfgang Breitling
Doug Burns
Andrew Clarke
Randolf Geist
Alex Gorbachev
Marco Gralike
Frits Hoogland
John Hurley

BAAG Membership

1919

John Hurley
Anjo Kolk
David Kurtz
Jonathan Lewis
Robyn Sands
Jared Still
Jeremiah Wilton

BAAG Comrades

2020

Clearly

� No surprise ... I do not endorse guessing

� Possibly a big surprise ... I do not like normal AWR reports

� I think the solutions to every performance issue is an Exadata

� And I am not attracted to all the tools with pretty GUIs

� So let us take a deep dive into performance tuning and address the root cause
of the majority of issues I see in my work

� We will focus on what fixes all issues ... not just one issue

� We all know that 30+ years of doing it the way we have been ...

2121

� We all know that 30+ years of doing it the way we have been ...
� DBMS_SUPPORT introduced with version 7.2

� DBMS_TRACE introduced with version 8.1.5

� DBMS_MONITOR introduced with version 10.1

� 10053 and 10046 traces and TKPROF

... has not eliminated tuning problems

What Affects Performance (1:2)

� Hardware
� Servers Resources

� CPU

� Memory

� Bus Bandwidth and Latency

� Storage Subsystems

� Networks

� Software
� Operating System Configuration

� Application

� Web Servers

� Application Servers

� Middleware Caching

� Application Code Quality

2222

� Operating System Configuration

� Virtual Machines

� Drivers

� Database
� Memory Allocation

� Optimizer Configuration

� SQL Quality

Let's focus on what is

important

but not on the radar

What Affects Performance (2:2)

� Everything affects performance

� What I want to focus on today is not those things that affect a single SQL
statement

� I want to focus on those things that affect all SQL statements

� The overwhelming majority of database environments where I am brought in,
where my team is brought in, have the following characteristics
� The wrong servers purchased

� Storage poorly configured

2323

� Storage poorly configured

� Networks poorly configured

� SQL originating in applications where the DBA can't fix it or written by internal developers
that think the database is a byte bucket

24

Servers

Hardware

� Servers and Operating Systems
� Blade Servers

� I/O Cards

� NUMA Architecture

� HugePages

� Swapiness

� Virtual Machines

� Storage

2525

� Storage
� Controllers

� Read-Write Caches

� LUN Size and Layout

� Networks
� TCP/IP

� UDP

NUMA Memory Allocation

� Non-Uniform Memory Access
� A memory design used in multiprocessing, where the memory access time depends on the

memory location relative to the processor

� A processor can access its own local memory faster than non-local memory

� The benefits of NUMA are limited to particular workloads, notably on servers where the
data are often associated strongly with certain tasks or users

2626

Diagram Source: Wikipedia

[root@hc1pl-oda01 etc]# numactl --hardware

available: 1 nodes (0)

node 0 size: 262086 MB

node 0 free: 113558 MB

node distances:

node 0

0: 10

[root@hc1pl-oda01 etc]# numactl --show

policy: default

preferred node: current

physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47

cpubind: 0

nodebind: 0

membind: 0

[root@hc1pl-oda01 etc]# numactl --hardware

available: 1 nodes (0)

node 0 size: 262086 MB

node 0 free: 113558 MB

node distances:

node 0

0: 10

[root@hc1pl-oda01 etc]# numactl --show

policy: default

preferred node: current

physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47

cpubind: 0

nodebind: 0

membind: 0

Detect NUMA Usage

[dmorgan@lxorap1n5 ~]$ numactl --hardware

available: 2 nodes (0-1)

node 0 size: 48457 MB

NUMA Not Configured on an ODA

NUMA Configured

2727

more examples: www.morganslibrary.org/reference/numa.html

node 0 size: 48457 MB

node 0 free: 269 MB

node 1 size: 48480 MB

node 1 free: 47 MB

node distances:

node 0 1

0: 10 20

1: 20 10

[dmorgan@lxorap1n5 ~]$ numactl --show

policy: default

preferred node: current

physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

cpubind: 0 1

nodebind: 0 1

membind: 0 1

Is Your Database NUMA Aware?

SQL> SELECT a.ksppinm PNAME, c.ksppstvl PVAL, a.ksppdesc PDESC

2 FROM x$ksppi a, x$ksppcv b, x$ksppsv c

3 WHERE a.indx = b.indx

4 AND a.indx = c.indx

5 AND LOWER(a.ksppinm) LIKE '%numa%'

6* ORDER BY 1;

PNAME PVAL PDESC

-------------------------- -------------- ---

_NUMA_instance_mapping Not specified Set of nodes that this instance should run on

_NUMA_pool_size Not specified aggregate size in bytes of NUMA pool

_db_block_numa 1 Number of NUMA nodes

_enable_NUMA_interleave TRUE Enable NUMA interleave mode

SQL> SELECT a.ksppinm PNAME, c.ksppstvl PVAL, a.ksppdesc PDESC

2 FROM x$ksppi a, x$ksppcv b, x$ksppsv c

3 WHERE a.indx = b.indx

4 AND a.indx = c.indx

5 AND LOWER(a.ksppinm) LIKE '%numa%'

6* ORDER BY 1;

PNAME PVAL PDESC

-------------------------- -------------- ---

_NUMA_instance_mapping Not specified Set of nodes that this instance should run on

_NUMA_pool_size Not specified aggregate size in bytes of NUMA pool

_db_block_numa 1 Number of NUMA nodes

_enable_NUMA_interleave TRUE Enable NUMA interleave mode

2828

_enable_NUMA_interleave TRUE Enable NUMA interleave mode

_enable_NUMA_optimization FALSE Enable NUMA specific optimizations

_enable_NUMA_support FALSE Enable NUMA support and optimizations

_numa_buffer_cache_stats 0 Configure NUMA buffer cache stats

_numa_shift_enabled TRUE Enable NUMA shift

_numa_shift_value 0 user defined value for numa nodes shift

_numa_trace_level 0 numa trace event

_px_numa_stealing_enabled TRUE enable/disable PQ granule stealing across NUMA nodes

_px_numa_support_enabled FALSE enable/disable PQ NUMA support

_rm_numa_sched_enable FALSE Is Resource Manager (RM) related NUMA scheduled

policy enabled

_rm_numa_simulation_cpus 0 number of cpus for each pg for numa simulation in

resource mgr

_rm_numa_simulation_pgs 0 number of PGs for numa simulation in resource manager

_enable_NUMA_interleave TRUE Enable NUMA interleave mode

_enable_NUMA_optimization FALSE Enable NUMA specific optimizations

_enable_NUMA_support FALSE Enable NUMA support and optimizations

_numa_buffer_cache_stats 0 Configure NUMA buffer cache stats

_numa_shift_enabled TRUE Enable NUMA shift

_numa_shift_value 0 user defined value for numa nodes shift

_numa_trace_level 0 numa trace event

_px_numa_stealing_enabled TRUE enable/disable PQ granule stealing across NUMA nodes

_px_numa_support_enabled FALSE enable/disable PQ NUMA support

_rm_numa_sched_enable FALSE Is Resource Manager (RM) related NUMA scheduled

policy enabled

_rm_numa_simulation_cpus 0 number of cpus for each pg for numa simulation in

resource mgr

_rm_numa_simulation_pgs 0 number of PGs for numa simulation in resource manager

more examples: www.morganslibrary.org/reference/numa.html

Enable Database NUMA Support

conn / as sysdba

ALTER SYSTEM SET "_enable_NUMA_support" = TRUE

COMMENT='NUMA Support Enabled 15-Mar-2015'

CONTAINER=ALL

SCOPE=SPFILE

SID='*';

conn / as sysdba

ALTER SYSTEM SET "_enable_NUMA_support" = TRUE

COMMENT='NUMA Support Enabled 15-Mar-2015'

CONTAINER=ALL

SCOPE=SPFILE

SID='*';

2929

� COMMENT

� Commenting changes provides change management good practices

� CONTAINER

� New 12c syntax directing a change to alter all containers or the current container

� SCOPE

� MEMORY, SPFILE or BOTH

� SID

� The asterisk indicates that we want the change to take place on all cluster nodes

more examples: www.morganslibrary.org/reference/numa.html

HugePages

� Also known as "Large Memory Pages" or just "Large Pages"

� Each page table entry represents a “virtual to physical” translation of a
process’s memory

� Can be as large as 64 KB in size per entry

� Can be huge for large memory systems
� See PageTables in /proc/meminfo

� As large a 1.5 GB

� The entire SGA must fit inside the HugePages

3030

� The entire SGA must fit inside the HugePages
� If it does not fit ... then none of it will use the HugePage memory

� You will essentially have walled your database off from using a large portion of the server's
memory

Swapiness

� Swapping (aka Paging)

� In a sense the operating system's version of the Oracle Temp tablespace

� In older versions of the ODA swapiness was set at 100 (a bad idea) and with
the X5-2 has been set at 0 (an almost equally bad idea)

Value Strategy

vm.swapiness=0 The kernel will swap only to avoid an out of memory condition

vm.swapiness=60 The default value

vm.swapiness=100 The kernel will swap aggressively

3131

the X5-2 has been set at 0 (an almost equally bad idea)

32

Unstable database Computing System

Tuesday Email

3333

Let's Talk About Blades

� Stability is critical to Oracle DBAs the organizations that employ them

� If you have stability issues you can waste staggering amounts of time proving
the issue isn't the database

� I have worked extensively with Cisco UCS
� ~10 databases stand-alone 11gR2

� ~75 RAC Active-Active and Active-Passive Failover Clusters

� The questions that need to be asked are
� What is the value of failover for a cluster?

3434

� What is the value of failover for a cluster?

� What is the value of functioning network diagnostics?

� What is the value of stability?

VLANs and the Cluster Interconnect (1:2)

� It is essentially impossible do what is recommended in Oracle Support's
"best practices" guidelines for RAC with blades: any blades from any vendor

RAC: Frequently Asked Questions (Doc ID 220970.1)

Cluster interconnect network separation can be satisfied either by using standalone, dedicated switches, which provide the
highest degree of network isolation, or Virtual Local Area Networks defined on the Ethernet switch, which provide broadcast
domain isolation between IP networks. VLANs are fully supported for Oracle Clusterware interconnect deployments.
Partitioning the Ethernet switch with VLANs allows for:
- Sharing the same switch for private and public communication.
- Sharing the same switch for the private communication of more than one cluster.
- Sharing the same switch for private communication and shared storage access.

RAC: Frequently Asked Questions (Doc ID 220970.1)

Cluster interconnect network separation can be satisfied either by using standalone, dedicated switches, which provide the
highest degree of network isolation, or Virtual Local Area Networks defined on the Ethernet switch, which provide broadcast
domain isolation between IP networks. VLANs are fully supported for Oracle Clusterware interconnect deployments.
Partitioning the Ethernet switch with VLANs allows for:
- Sharing the same switch for private and public communication.
- Sharing the same switch for the private communication of more than one cluster.
- Sharing the same switch for private communication and shared storage access.

3535

The following best practices should be followed:

The Cluster Interconnect VLAN must be on a non-routed IP subnet.

All Cluster Interconnect networks must be configured with non-routed IPs. The server-server communication should be single
hop through the switch via the interconnect VLAN. There is no VLAN-VLAN communication.

Oracle recommends maintaining a 1:1 mapping of subnet to VLAN.

The most common VLAN deployments maintain a 1:1 mapping of subnet to VLAN. It is strongly recommended to avoid multi-
subnet mapping to a single VLAN. Best practice recommends a single access VLAN port configured on the switch for the
cluster interconnect VLAN. The server side network interface should have access to a single VLAN.

The following best practices should be followed:

The Cluster Interconnect VLAN must be on a non-routed IP subnet.

All Cluster Interconnect networks must be configured with non-routed IPs. The server-server communication should be single
hop through the switch via the interconnect VLAN. There is no VLAN-VLAN communication.

Oracle recommends maintaining a 1:1 mapping of subnet to VLAN.

The most common VLAN deployments maintain a 1:1 mapping of subnet to VLAN. It is strongly recommended to avoid multi-
subnet mapping to a single VLAN. Best practice recommends a single access VLAN port configured on the switch for the
cluster interconnect VLAN. The server side network interface should have access to a single VLAN.

VLANs and the Cluster Interconnect (2:2)

� It is extremely difficult to troubleshoot interconnect issues with UCS as the
tools for separating public, storage, and fusion interconnect packets do not
exist

Troubleshooting gc block lost and Poor Network Performance in a RAC Environment (Doc ID 563566.1)

6. Interconnect LAN non-dedicated
Description: Shared public IP traffic and/or shared NAS IP traffic, configured on the interconnect LAN will result in
degraded application performance, network congestion and, in extreme cases, global cache block loss.

Action: The interconnect/clusterware traffic should be on a dedicated LAN defined by a non-routed subnet. Interconnect
traffic should be isolated to the adjacent switch(es), e.g. interconnect traffic should not extend beyond the access layer
switch(es) to which the links are attached. The interconnect traffic should not be shared with public or NAS traffic. If
Virtual LANs (VLANS) are used, the interconnect should be on a single, dedicated VLAN mapped to a dedicated, non-

Troubleshooting gc block lost and Poor Network Performance in a RAC Environment (Doc ID 563566.1)

6. Interconnect LAN non-dedicated
Description: Shared public IP traffic and/or shared NAS IP traffic, configured on the interconnect LAN will result in
degraded application performance, network congestion and, in extreme cases, global cache block loss.

Action: The interconnect/clusterware traffic should be on a dedicated LAN defined by a non-routed subnet. Interconnect
traffic should be isolated to the adjacent switch(es), e.g. interconnect traffic should not extend beyond the access layer
switch(es) to which the links are attached. The interconnect traffic should not be shared with public or NAS traffic. If
Virtual LANs (VLANS) are used, the interconnect should be on a single, dedicated VLAN mapped to a dedicated, non-

3636

Virtual LANs (VLANS) are used, the interconnect should be on a single, dedicated VLAN mapped to a dedicated, non-
routed subnet, which is isolated from public or NAS traffic.
Virtual LANs (VLANS) are used, the interconnect should be on a single, dedicated VLAN mapped to a dedicated, non-
routed subnet, which is isolated from public or NAS traffic.

My Personal Experience

� Blade servers, of which Cisco UCS is but one example,
do not have sufficient independent network cards to
avoid the networking becoming a single point of failure

� It is good when the public interface has a "keep alive"
enabled but this is a fatal flaw for the cluster
interconnect as fail-over will be delayed

� When different types of packets, public, storage, and interconnect are mixed
low-level diagnostics are difficult ... if not impossible

3737

� When different types of packets, public, storage, and interconnect are mixed
the latency of one is the latency of all

� Traffic from any one blade can impact all blades

UCS Blade Server Conclusions

� Blade servers may be a good solution for application and web servers

� They may even be acceptable for stand-alone databases

� Blade servers are unsuitable when
� High availability is the goal

� RAC the technology for achieving it

� Performance is critically important

� You don't want to stay at work at night, on weekends, and holidays troubleshooting
repeated unexplained failures

3838

repeated unexplained failures

� Unstable database Computing System

39

Network

I/O (1:3)

� Not all HBA cards are the same

� NIC cards vary widely in capabilities and performance
� TCP/IP Off-loading

� Kernel Optimization of the TCP/IP stack

--enable TCP kernel auto-tuning

/proc/sys/net/ipv4/tcp_moderate_rcvbuf (1=on)

-- tune TCP max memory: tune to 2xBDP (Bandwidth x Delay Product)

-- For example, with 40 Mbits/sec bandwidth, 25 msec delay,

-- BDP = (40 x 1000 / 8 Kbytes/sec) x (0.025 sec) ~ 128 Kbytes

--enable TCP kernel auto-tuning

/proc/sys/net/ipv4/tcp_moderate_rcvbuf (1=on)

-- tune TCP max memory: tune to 2xBDP (Bandwidth x Delay Product)

-- For example, with 40 Mbits/sec bandwidth, 25 msec delay,

-- BDP = (40 x 1000 / 8 Kbytes/sec) x (0.025 sec) ~ 128 Kbytes

4040

-- BDP = (40 x 1000 / 8 Kbytes/sec) x (0.025 sec) ~ 128 Kbytes

/proc/sys/net/ipv4/tcp_rmem and tcp_wmem 4096 87380 174760

-- tune the socket buffer sizes by setting to 2xBDP

/proc/sys/net/core/rmem_max and wmem_max

-- ensure that TCP Performance features are enabled

/proc/sys/net/ipv4/tcp_sack

/proc/sys/net/ipv4/tcp_window_scaling

/proc/sys/net/ipv4/tcp_timestamps

-- additionally be sure NIC cards have TCP off-loading capability

-- BDP = (40 x 1000 / 8 Kbytes/sec) x (0.025 sec) ~ 128 Kbytes

/proc/sys/net/ipv4/tcp_rmem and tcp_wmem 4096 87380 174760

-- tune the socket buffer sizes by setting to 2xBDP

/proc/sys/net/core/rmem_max and wmem_max

-- ensure that TCP Performance features are enabled

/proc/sys/net/ipv4/tcp_sack

/proc/sys/net/ipv4/tcp_window_scaling

/proc/sys/net/ipv4/tcp_timestamps

-- additionally be sure NIC cards have TCP off-loading capability

I/O (2:3)

� Optimize Data Guard
--sqlnet.ora

NAMES.DIRECTORY_PATH= (TNSNAMES, EZCONNECT)

DEFAULT_SDU_SIZE=32767

-- listener.ora

DGLOGSHIPB =

(DESCRIPTION =

(SDU = 32767)

(SEND_BUF_SIZE=9375000)

(RECV_BUF_SIZE=9375000)

(ADDRESS_LIST =

--sqlnet.ora

NAMES.DIRECTORY_PATH= (TNSNAMES, EZCONNECT)

DEFAULT_SDU_SIZE=32767

-- listener.ora

DGLOGSHIPB =

(DESCRIPTION =

(SDU = 32767)

(SEND_BUF_SIZE=9375000)

(RECV_BUF_SIZE=9375000)

(ADDRESS_LIST =

4141

(ADDRESS = (PROTOCOL = TCP)(HOST =

10.0.7.2)(PORT = 1526))

)

(CONNECT_DATA =

(SERVICE_NAME = prodb)

)

)

(ADDRESS = (PROTOCOL = TCP)(HOST =

10.0.7.2)(PORT = 1526))

)

(CONNECT_DATA =

(SERVICE_NAME = prodb)

)

)

more examples: www.morganslibrary.org/reference/data_guard.html

I/O (3:3)

� Optimize for RAC
� Read the Oracle installation documents with very careful attention to the advice given for

kernel parameters

� If on Linux and you don't know what rmem and wmem are ... read the docs

� If on Solaris and you don't know what rsize and wsize are ... read the docs?

4242

Virtual Machines

� Leave sufficient cpu resources for the bare-metal operating system to perform
I/O and manage network traffic

� Disable interrupt coalescing

� Disable chipset power management

� Read the docs http://www.vmware.com/pdf/Perf_Best_Practices_vSphere5.0.pdf

� VMs on NUMA machines should be configured to enhance memory allocation
� This example is from vSphere where 0 and 1 are the processor sockets

4343

numa.nodeAffinity=0,1numa.nodeAffinity=0,1

44

Port Exhaustion

In The Beginning (1:4)

� Customer Reports are stuck in the queue

Hi Ops

Report Jobs are getting stuck in Waiting in Queue. Also, having
performance issues with Admin side

Thanks,
J

Hi Ops

Report Jobs are getting stuck in Waiting in Queue. Also, having
performance issues with Admin side

Thanks,
J

4545

Step to Recreate

1. Log into Website
2. Navigate to Reports
3. Search for Account Data
4. Run the report for morgand
5. Notice that the report is stuck in Waiting in Queue

Step to Recreate

1. Log into Website
2. Navigate to Reports
3. Search for Account Data
4. Run the report for morgand
5. Notice that the report is stuck in Waiting in Queue

In The Beginning (2:4)

� The website generated an HTTP403 error

As a partner we got communication that the previously assigned
sandboxes will be brought down.

Instead -as a partner- we got a them demo environment assigned (Tenant
ID: PARTNER0001 which we have integrated with a customer database
instance (xxxdemo ace4morgan).

As a partner we got communication that the previously assigned
sandboxes will be brought down.

Instead -as a partner- we got a them demo environment assigned (Tenant
ID: PARTNER0001 which we have integrated with a customer database
instance (xxxdemo ace4morgan).

4646

Everything was working fine (including integration).
Today I tried to access the instance via the partner and via the direct url
(https://partner0001.demo.xxx.com/admin/nativelogin.jsp) but in both case
an error is displayed on the screen (see attachment).

We need this be fixed as soon as possible!
(major customer demo session on Friday!)

Everything was working fine (including integration).
Today I tried to access the instance via the partner and via the direct url
(https://partner0001.demo.xxx.com/admin/nativelogin.jsp) but in both case
an error is displayed on the screen (see attachment).

We need this be fixed as soon as possible!
(major customer demo session on Friday!)

In The Beginning (3:4)

4747

In The Beginning (4:4)

4848

How Does An Application Server Connect to RAC?

� Do you connect to the SCAN IP by name or number?

� If a name ... a DNS server resolves the name to an IP

� To avoid single points of failure you should have two or more DNS servers
with a load balancer, or two, in front of them

� The SCAN IP points to a VIP which may again need to be resolved from a
name to a physical IP address

� The VIP may again point to a name which must be resolved to a physical IP
address

4949

address

� Most servers cache DNS entries to improve speed
� Do you know if yours do?

Triaging a Connection Problem

� Try to connect to the cluster?
� From where?

� With what tool?

� To the SCAN, VIP, or physical IP?

� Ping the IP addresses

� Run Trace Route on the IP addresses

� Read the listener log

� Read the database alert log

5050

� Read the database alert log

� Call the network admins who will tell you
everything looks good ...
the network is just Ok ...
the network is always Ok
the network will always be Ok

RESOLVE.CONF (1:3)

5151

RESOLVE.CONF (2:3)

5252

RESOLVE.CONF (3:3)

5353

Resolution: The DNS Admin POV (1:3)

On August 7th, we experienced a 2 hour outage that impacted more than 150 customers. In
researching this outage it was noticed that DNS caching had been disabled on the Oracle
Database Servers. Also, in going through the logs on the F5 Local Traffic Manager (LTM), is was
noticed that there were 39,696 port exhaustion errors on port 53 going to the three DNS servers,
starting at approximately 4am and ending slightly after 3pm. There were also an additional
625,665 port exhaustion error messages that were dropped in the logs, bringing the total to
665,361 port exhaustion error messages.

Further research discovered that there was a misconfiguration in the resolv.conf file on the
servers in the data center. The resolv.conf file on these servers looked like this:

5454

search morgan.priv

nameserver 10.24.244.200 (VIP pointing to servers listed below)

nameserver 10.24.244.21 (Bind server 01)

nameserver 10.24.244.25 (Bind server 02)

nameserver 10.24.244.29 (Bind server 03)

This results in the first DNS query going to the VIP for hostname and reverse IP resolution, and then to the
three DNS servers. However, the 3 DNS servers which were supposed to be the alternative option to the VIP
are also pointing to the same VIP. This basically sets up an infinite loop until the DNS queries time out.

The recommended resolution was to remove the VIP and have the servers query the DNS servers directly.

Resolution: The DNS Admin POV (2:3)

These graphs give an overview of what was happening throughout August 7th on the servers. I
noticed that there is a sudden drop in connections right around 10:40am; and returning at around
10:45 am.

If you look at the files I’ve sent out previously, there is actually less evidence of port exhaustion
between 10:22 and 10:42; with increasing levels of port exhaustion as connections and activity
increases after about 12:07pm.

Additionally, I went back over the last few days and looked for port exhaustion for the DNS servers
on port 53 and found the following:

Jul 29 – 16 port exhaustion errors

5555

Jul 29 – 16 port exhaustion errors

Jul 30 – 7 port exhaustion errors

Jul 31 – 8 port exhaustion errors

Aug 1 – 6 port exhaustion errors

Aug 2 – 38,711 port exhaustion errors

Aug 3 – 26,023 port exhaustion errors

Aug 4 – 22,614 port exhaustion errors

Aug 5 – 20 port exhaustion errors

Aug 6 – 11,282 port exhaustion errors

Resolution: The DNS Admin POV (3:3)

Additionally, I did some calculations on the additional port exhaustion log messages that were
dropped – these were the throttling error that I mentioned previously.

On the 7th of August there were an additional 625,665 port exhaustion error messages that were
dropped. On August 3rd, there were an additional 99,199 port exhaustion error messages that
were dropped.

And on August 2nd, there were an additional 204,315 port exhaustion error messages that were
dropped.

These numbers are in addition to the numbers of port exhaustion errors previously reported.

5656

Resolution: The System Admin POV

Every unix box at the LAX data center has this resolv.conf file:

search morgan.priv

nameserver 10.24.244.200 (VIP pointing to both AD01 and AD02 windows servers)

nameserver 10.24.244.21 (Bind server 01)

nameserver 10.24.244.25 (Bind server 02)

nameserver 10.24.244.29 (Bind server 03)

The idea behind this design is to firstly query the VIP (for hostname resolution) and then, the 3 bind servers
which are slave DNS servers of the AD DNS servers described above.

Now, I've found that the BIND servers (unix) which are supposed to be the alternative option to the VIP,
have the same /etc/resolv.conf file and therefore are also pointing to the VIP on the first place. As you can

5757

have the same /etc/resolv.conf file and therefore are also pointing to the VIP on the first place. As you can
imagine this basically ends up in an infinite loop until the load balancer get finally some relief or the DNS
queries timeout.

Refer to the attachment "Morgan current arch" to see the workflow.

The fix should be easy and basically would consist of removing the VIP from the /etc/resolv.conf from the
Bind servers and have them pointing to each AD server (bind01 -> AD01, bind02 -> AD02, etc).

The ultimate solution would be to remove the VIP from all the /etc/resolv.conf files and query the BIND
servers (Helen has been asking for this for months) and although we have done that in the DEN
environment, apparently that hasn't been done on the LAX side yet.

Port Exhaustion Conclusions

� As a DBA you MUST understand how DNS is configured for every one of your
databases

� As a DBA you MUST understand resolv.conf and monitor it for content and
changes

� As a DBA you MUST educate DNS and System Admins about how to connect
to a RAC cluster or a standby

� As a DBA, when troubleshooting connection issues, you MUST log in from an
application server to identify what is actually going on ... you can't just FTP to

5858

application server to identify what is actually going on ... you can't just FTP to
the box

59

Storage

Storage Hardware

� Storage
� Spinning Disk

� Solid State Devices

� Controllers

� SAN Switches

6060

Storage Heat Map

6161

Storage Layout

LUN 204

LUN 208

LUN 74

LUN 101

LUN 57

LUN 123

LUN 92 LUN 62 LUN 106 LUN 107 LUN 51

LUN 102

LUN 105

LUN 58 LUN 47 LUN 126 LUN 103 LUN 85

LUN 206 LUN 44 LUN 56 LUN 45 LUN 67 LUN 14

c0vmware01p, c0vmware...c0vmware01p, c0vmware...

c0vmware02p, c0vmware...c0vmware02p, c0vmware...

c0ora01pc0ora01p

c0odsrac01p, c0odsrac02pc0odsrac01p, c0odsrac02p

c0ods04pc0ods04p

c0orarac01p, c0orarac...c0orarac01p, c0orarac...

c0visdb03p, c0visdb04pc0visdb03p, c0visdb04p

c0orademand01pc0orademand01p

LUN 204

LUN 208

LUN 74

LUN 101

LUN 57

LUN 123

LUN 92 LUN 62 LUN 106 LUN 107 LUN 51

LUN 102

LUN 105

LUN 58 LUN 47 LUN 126 LUN 103 LUN 85

LUN 206 LUN 44 LUN 56 LUN 45 LUN 67 LUN 14

c0vmware01p, c0vmware...

c0vmware02p, c0vmware...

c0ora01p

c0odsrac01p, c0odsrac02p

c0ods04p

c0orarac01p, c0orarac...

c0visdb03p, c0visdb04p

c0orademand01p

6262

LUN 200

LUN 205

LUN 94

LUN 81

LUN 78

LUN 82

LUN 77

LUN 35

LUN 49

LUN 104

LUN 53

LUN 124

LUN 130

LUN 84

LUN 43

LUN 17

LUN 30

LUN 19

LUN 88

LUN 207

LUN 26 LUN 8 LUN 2 LUN 4 LUN

LUN 1

LUN 1

LUN 1

LUN 1

LUN 1 LUN 5 LUN 6 LUN 5

LUN

LUN

LUN

LUN

LUN LUN LUN LUN

LUN

LUN

LUN

LUN

LUN LU LU LU

LUN

LUN

LUN

LUN

LU LU LU LU

LU

LU

LU

LU

L L L L

L

L

L

L L L

L

L

L

L

L
L
L

c0orademand01pc0orademand01p

c0vmware13p, c0vmware...c0vmware13p, c0vmware...

c0file01p, c0file02p,...c0file01p, c0file02p,...

c0visrptdb01pc0visrptdb01p

c0baltimore01pc0baltimore01p

c0ws01p, c0ws02pc0ws01p, c0ws02p

c0orademand02tc0orademand02t

LUN 200

LUN 205

LUN 94

LUN 81

LUN 78

LUN 82

LUN 77

LUN 35

LUN 49

LUN 104

LUN 53

LUN 124

LUN 130

LUN 84

LUN 43

LUN 17

LUN 30

LUN 19

LUN 88

LUN 207

LUN 26 LUN 8 LUN 2 LUN 4 LUN

LUN 1

LUN 1

LUN 1

LUN 1

LUN 1 LUN 5 LUN 6 LUN 5

LUN

LUN

LUN

LUN

LUN LUN LUN LUN

LUN

LUN

LUN

LUN

LUN LU LU LU

LUN

LUN

LUN

LUN

LU LU LU LU

LU

LU

LU

LU

L L L L

L

L

L

L L L

L

L

L

L

L
L
L

c0orademand01p

c0vmware13p, c0vmware...

c0file01p, c0file02p,...

c0visrptdb01p

c0baltimore01p

c0ws01p, c0ws02p

c0orademand02t

Solving the Storage Issue

� Do not used shared storage

� Do not use shared storage networks

� Do not use RAID 5

� Stripe And Mirror Everything

6363

In-Object Space Wastage (1:6)

� By default the Oracle Database wastes 10% of all the storage you allocate to it
SQL> SELECT owner, pct_free, count(*)

2 FROM dba_tables

3 WHERE pct_free IS NOT NULL

3 GROUP BY owner, pct_free

4* ORDER BY 1,2;

OWNER PCT_FREE COUNT(*)

-------------------- ---------- ----------

APEX_040200 0 2

APEX_040200 10 450

CTXSYS 0 16

CTXSYS 10 37

DBSNMP 0 1

DBSNMP 10 19

SQL> SELECT owner, pct_free, count(*)

2 FROM dba_tables

3 WHERE pct_free IS NOT NULL

3 GROUP BY owner, pct_free

4* ORDER BY 1,2;

OWNER PCT_FREE COUNT(*)

-------------------- ---------- ----------

APEX_040200 0 2

APEX_040200 10 450

CTXSYS 0 16

CTXSYS 10 37

DBSNMP 0 1

DBSNMP 10 19

Block Header

Free Space (Default 10%)

General Block Information
(Block add, Segment type)
85 ~ 100 bytes

Table info in Cluster

Row info in Block
(2 byte per row)

Table Dictionary

Row Dictionary

6464

DVSYS 10 34

GSMADMIN_INTERNAL 0 5

GSMADMIN_INTERNAL 10 14

LBACSYS 10 22

MDSYS 10 130

ORDDATA 10 90

SYS 0 90

SYS 1 15

SYS 10 1105

SYSTEM 0 1

SYSTEM 10 131

WMSYS 0 16

WMSYS 10 24

XDB 10 28

XDB 99 1

DVSYS 10 34

GSMADMIN_INTERNAL 0 5

GSMADMIN_INTERNAL 10 14

LBACSYS 10 22

MDSYS 10 130

ORDDATA 10 90

SYS 0 90

SYS 1 15

SYS 10 1105

SYSTEM 0 1

SYSTEM 10 131

WMSYS 0 16

WMSYS 10 24

XDB 10 28

XDB 99 1

Row Data

Used when a row is
inserted or updated
(pctfree, pctused)

Table or Index Data

In-Object Space Wastage (2:6)

� Within file systems space may not be allocated efficiently to data files

� Within data files space may not be allocated efficiently to segments

� Within segment extents space may not be allocated efficiently too

� In the preceding example, assuming 10% free space and 90 rows per block
� Reading 89 rows requires reading 8K

� Reading 91 rows requires reading 16K

� Without the pctfree loss reading 91-100 rows would still require only 8K of I/O

� With the free space at 10% reading 200 rows requires reading 3 x 8K

6565

� With the free space at 10% reading 200 rows requires reading 3 x 8K

� With the free space at 0% reading 200 rows saves 1/3 of the I/O

� Know your systems well enough to know if you can eliminate the pct free value

In-Object Space Wastage (3:6)

� Online segments can be shrunk using a variety of technologies
� DBMS_REDEFINITION

� DBMS_SPACE

� DDL

TABLE
HEADER 0101010111001101

11001101
10101111
11101101

SQL> ALTER TABLE servers ENABLE ROW MOVEMENT;

SQL> ALTER TABLE servers SHRINK SPACE CASCADE;

SQL> ALTER TABLE servers ENABLE ROW MOVEMENT;

SQL> ALTER TABLE servers SHRINK SPACE CASCADE;

6666

HEADER 01010101
11011010

11001101
00001101 10111101

11101101
0000110110111101

High Water Mark

TABLE
HEADER 11001101

00001101

11001101
10101111
11101101
00001101

11001101
10101111
11101101
00001101

High Water Mark Free Space

Free Space

Basic Compression: Heap Tables

� Works by removing duplicate
values at the block level

� Sets PCT_FREE to zero

SQL> CREATE TABLE sh_test AS

2 SELECT /*+ APPEND */ * FROM sales;

Table created.

SQL> SELECT blocks FROM user_segments WHERE segment_name = 'SH_TEST';

BLOCKS

4608

SQL> drop table sh_test purge;

Table dropped.

SQL> CREATE TABLE sh_test COMPRESS AS

SQL> CREATE TABLE sh_test AS

2 SELECT /*+ APPEND */ * FROM sales;

Table created.

SQL> SELECT blocks FROM user_segments WHERE segment_name = 'SH_TEST';

BLOCKS

4608

SQL> drop table sh_test purge;

Table dropped.

SQL> CREATE TABLE sh_test COMPRESS AS

SQL> SELECT table_name, pct_free

2 FROM user_tables

TABLE_NAME PCT_FREE

------------------------------ ----------

CAL_MONTH_SALES_MV 10

CHANNELS 10

COSTS

COUNTRIES 10

CUSTOMERS 10

SQL> SELECT table_name, pct_free

2 FROM user_tables

TABLE_NAME PCT_FREE

------------------------------ ----------

CAL_MONTH_SALES_MV 10

CHANNELS 10

COSTS

COUNTRIES 10

CUSTOMERS 10

6767

SQL> CREATE TABLE sh_test COMPRESS AS

2 SELECT /*+ APPEND */ * FROM sales;

Table created.

SQL> SELECT blocks FROM user_segments WHERE segment_name = 'SH_TEST';

BLOCKS

1536

SQL> SELECT 1536/4608 FROM dual;

1536/4608

.333333333

SQL> CREATE TABLE sh_test COMPRESS AS

2 SELECT /*+ APPEND */ * FROM sales;

Table created.

SQL> SELECT blocks FROM user_segments WHERE segment_name = 'SH_TEST';

BLOCKS

1536

SQL> SELECT 1536/4608 FROM dual;

1536/4608

.333333333

CUSTOMERS 10

DIMENSION_EXCEPTIONS 10

DRSUP_TEXT_IDXI 10

DRSUP_TEXT_IDXK 0

DRSUP_TEXT_IDXN 0

DRSUP_TEXT_IDXR 10

FWEEK_PSCAT_SALES_MV 10

PRODUCTS 10

PROMOTIONS 10

SALES

SALES_AUDIT 10

SALES_HISTORY 10

SALES_TRANSACTIONS_EXT 0

SH_TEST 0

SUPPLEMENTARY_DEMOGRAPHICS 10

TIMES 10

CUSTOMERS 10

DIMENSION_EXCEPTIONS 10

DRSUP_TEXT_IDXI 10

DRSUP_TEXT_IDXK 0

DRSUP_TEXT_IDXN 0

DRSUP_TEXT_IDXR 10

FWEEK_PSCAT_SALES_MV 10

PRODUCTS 10

PROMOTIONS 10

SALES

SALES_AUDIT 10

SALES_HISTORY 10

SALES_TRANSACTIONS_EXT 0

SH_TEST 0

SUPPLEMENTARY_DEMOGRAPHICS 10

TIMES 10

Heap Table Compression Benchmark: NONE

SQL> CREATE TABLE sh_test AS SELECT /*+ APPEND */ * FROM sales;

Table created.

SQL> select blocks, pct_free from dba_tables where table_name = 'SH_TEST';

BLOCKS PCT_FREE

---------- ----------

4513 10

SQL> explain plan for select min(time_id) from sh_test;

Explained.

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

SQL> CREATE TABLE sh_test AS SELECT /*+ APPEND */ * FROM sales;

Table created.

SQL> select blocks, pct_free from dba_tables where table_name = 'SH_TEST';

BLOCKS PCT_FREE

---------- ----------

4513 10

SQL> explain plan for select min(time_id) from sh_test;

Explained.

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

6868

--

Plan hash value: 1514323645

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 8 | 1229 (1)| 00:00:01 |

| 1 | SORT AGGREGATE | | 1 | 8 | | |

| 2 | TABLE ACCESS FULL| SH_TEST | 918K| 7178K| 1229 (1)| 00:00:01 |

--

--

Plan hash value: 1514323645

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 8 | 1229 (1)| 00:00:01 |

| 1 | SORT AGGREGATE | | 1 | 8 | | |

| 2 | TABLE ACCESS FULL| SH_TEST | 918K| 7178K| 1229 (1)| 00:00:01 |

--

Heap Table Compression Benchmark: BASIC

SQL> CREATE TABLE sh_test COMPRESS AS SELECT /*+ APPEND */ * FROM sales;

Table created.

SQL> select blocks, pct_free from dba_tables where table_name = 'SH_TEST';

BLOCKS PCT_FREE

---------- ----------

1511 0

SQL> explain plan for select min(time_id) from sh_test;

Explained.

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

SQL> CREATE TABLE sh_test COMPRESS AS SELECT /*+ APPEND */ * FROM sales;

Table created.

SQL> select blocks, pct_free from dba_tables where table_name = 'SH_TEST';

BLOCKS PCT_FREE

---------- ----------

1511 0

SQL> explain plan for select min(time_id) from sh_test;

Explained.

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

6969

PLAN_TABLE_OUTPUT

--

Plan hash value: 1514323645

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 8 | 416 (2)| 00:00:01 |

| 1 | SORT AGGREGATE | | 1 | 8 | | |

| 2 | TABLE ACCESS FULL| SH_TEST | 918K| 7178K| 416 (2)| 00:00:01 |

--

PLAN_TABLE_OUTPUT

--

Plan hash value: 1514323645

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 8 | 416 (2)| 00:00:01 |

| 1 | SORT AGGREGATE | | 1 | 8 | | |

| 2 | TABLE ACCESS FULL| SH_TEST | 918K| 7178K| 416 (2)| 00:00:01 |

--

Heap Table Compression Benchmark: ADVANCED

SQL> CREATE TABLE sh_test COMPRESS FOR OLTP AS SELECT /*+ APPEND */ * FROM sales;

Table created.

SQL> select blocks from dba_tables where table_name = 'SH_TEST';

BLOCKS

1676

SQL> select blocks from dba_segments where segment_name = 'SH_TEST';

BLOCKS

1792

SQL> CREATE TABLE sh_test COMPRESS FOR OLTP AS SELECT /*+ APPEND */ * FROM sales;

Table created.

SQL> select blocks from dba_tables where table_name = 'SH_TEST';

BLOCKS

1676

SQL> select blocks from dba_segments where segment_name = 'SH_TEST';

BLOCKS

1792

7070

Heap Table Compression Benchmark: ADVANCED
SQL> CREATE TABLE sh_test COMPRESS FOR OLTP AS SELECT /*+ APPEND */ * FROM sales;

Table created.

SQL> select blocks from dba_tables where table_name = 'SH_TEST';

BLOCKS PCT_FREE

---------- ----------

1676 10

SQL> CREATE TABLE sh_test ROW STORE COMPRESS ADVANCED AS SELECT /*+ APPEND */ * FROM sales;

SQL> select blocks, pct_free from dba_tables where table_name = 'SH_TEST';

BLOCKS PCT_FREE

---------- ----------

1676 10

SQL> explain plan for select min(time_id) from sh_test;

SQL> CREATE TABLE sh_test COMPRESS FOR OLTP AS SELECT /*+ APPEND */ * FROM sales;

Table created.

SQL> select blocks from dba_tables where table_name = 'SH_TEST';

BLOCKS PCT_FREE

---------- ----------

1676 10

SQL> CREATE TABLE sh_test ROW STORE COMPRESS ADVANCED AS SELECT /*+ APPEND */ * FROM sales;

SQL> select blocks, pct_free from dba_tables where table_name = 'SH_TEST';

BLOCKS PCT_FREE

---------- ----------

1676 10

SQL> explain plan for select min(time_id) from sh_test;

7171

SQL> explain plan for select min(time_id) from sh_test;

Explained.

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

Plan hash value: 1514323645

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 8 | 461 (2)| 00:00:01 |

| 1 | SORT AGGREGATE | | 1 | 8 | | |

| 2 | TABLE ACCESS FULL| SH_TEST | 918K| 7178K| 461 (2)| 00:00:01 |

--

SQL> explain plan for select min(time_id) from sh_test;

Explained.

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

Plan hash value: 1514323645

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 8 | 461 (2)| 00:00:01 |

| 1 | SORT AGGREGATE | | 1 | 8 | | |

| 2 | TABLE ACCESS FULL| SH_TEST | 918K| 7178K| 461 (2)| 00:00:01 |

--

Heap Table Compression Benchmark: Comparison
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

|--|

| 2 | TABLE ACCESS FULL| SH_TEST | 918K| 7178K| 1229 (1)| 00:00:01 | regular

| 2 | TABLE ACCESS FULL| SH_TEST | 918K| 7178K| 416 (2)| 00:00:01 | basic

| 2 | TABLE ACCESS FULL| SH_TEST | 918K| 7178K| 461 (2)| 00:00:01 | advanced

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

|--|

| 2 | TABLE ACCESS FULL| SH_TEST | 918K| 7178K| 1229 (1)| 00:00:01 | regular

| 2 | TABLE ACCESS FULL| SH_TEST | 918K| 7178K| 416 (2)| 00:00:01 | basic

| 2 | TABLE ACCESS FULL| SH_TEST | 918K| 7178K| 461 (2)| 00:00:01 | advanced

7272

Basic Compression: B*Tree Indexes

� To compress the leading columns in an index by remove duplicate values
� Space saving 34.4%

SQL> CREATE INDEX ix_sales_bic ON sales(prod_id, time_id, amount_sold);

Index created.

SQL> SELECT blocks FROM user_segments WHERE segment_name = 'IX_SALES_BIC';

BLOCKS

4096

SQL> drop index ix_sales_bic;

SQL> CREATE INDEX ix_sales_bic ON sales(prod_id, time_id, amount_sold);

Index created.

SQL> SELECT blocks FROM user_segments WHERE segment_name = 'IX_SALES_BIC';

BLOCKS

4096

SQL> drop index ix_sales_bic;

7373

Index dropped.

SQL> CREATE INDEX ix_sales_bic ON sales(prod_id, time_id, amount_sold) COMPRESS 2;

Index created.

SQL> SELECT blocks FROM user_segments WHERE segment_name = 'IX_SALES_BIC';

BLOCKS

2688

Index dropped.

SQL> CREATE INDEX ix_sales_bic ON sales(prod_id, time_id, amount_sold) COMPRESS 2;

Index created.

SQL> SELECT blocks FROM user_segments WHERE segment_name = 'IX_SALES_BIC';

BLOCKS

2688

� New feature in Database 12cR1
� Specify COMPRESS ADVANCED LOW to enable advanced index compression. Advanced

index compression improves compression ratios significantly while still providing efficient
access to indexes. Therefore, advanced index compression works well on all supported
indexes, including those indexes that are not good candidates for prefix compression.

� Space saving 20%

Advanced Compression: B*Tree Indexes

SQL> CREATE INDEX index ix_sales_amnt_sold ON sales(amount_sold);

Index created.

SQL> SELECT blocks FROM user_segments WHERE segment_name = 'IX_SALES_AMNT_SOLD';

BLOCKS

SQL> CREATE INDEX index ix_sales_amnt_sold ON sales(amount_sold);

Index created.

SQL> SELECT blocks FROM user_segments WHERE segment_name = 'IX_SALES_AMNT_SOLD';

BLOCKS

7474

BLOCKS

2560

SQL> drop index ix_sales_amnt_sold;

Index dropped.

SQL> CREATE INDEX ix_sales_amnt_sold ON sales(amount_sold) COMPRESS ADVANCED LOW;

Index created.

SQL> SELECT blocks FROM user_segments WHERE segment_name = 'IX_SALES_AMNT_SOLD';

BLOCKS

2048

BLOCKS

2560

SQL> drop index ix_sales_amnt_sold;

Index dropped.

SQL> CREATE INDEX ix_sales_amnt_sold ON sales(amount_sold) COMPRESS ADVANCED LOW;

Index created.

SQL> SELECT blocks FROM user_segments WHERE segment_name = 'IX_SALES_AMNT_SOLD';

BLOCKS

2048

DBMS_COMPRESSION Built-in Package

� Supports advanced compression features new as of 11gR2 and the Oracle-
Sun Exadata Server

� Stored procedures include
� DUMP_COMPRESSION_MAP

� GET_COMPRESSION_RATIO

� GET_COMPRESSION_TYPE

� INCREMENTAL_COMPRESS

SQL> DECLARE

2 blkcnt_cmp PLS_INTEGER;

3 blkcnt_uncmp PLS_INTEGER;

4 row_comp PLS_INTEGER;

5 row_uncmp PLS_INTEGER;

6 cmp_ratio NUMBER;

7 comptype VARCHAR2(30);

8 BEGIN

9 dbms_compression.get_compression_ratio('SYSTEM', 'SYS',

'SOURCE$', NULL, dbms_compression.comp_advanced, blkcnt_cmp,

SQL> DECLARE

2 blkcnt_cmp PLS_INTEGER;

3 blkcnt_uncmp PLS_INTEGER;

4 row_comp PLS_INTEGER;

5 row_uncmp PLS_INTEGER;

6 cmp_ratio NUMBER;

7 comptype VARCHAR2(30);

8 BEGIN

9 dbms_compression.get_compression_ratio('SYSTEM', 'SYS',

'SOURCE$', NULL, dbms_compression.comp_advanced, blkcnt_cmp,

7575

'SOURCE$', NULL, dbms_compression.comp_advanced, blkcnt_cmp,

blkcnt_uncmp, row_comp, row_uncmp, cmp_ratio, comptype);

10 dbms_output.put_line('Block Count Compressed: ' || TO_CHAR(blkcnt_cmp));

11 dbms_output.put_line('Block Count UnCompressed: ' || TO_CHAR(blkcnt_uncmp));

12 dbms_output.put_line('Row Count Compressed: ' || TO_CHAR(row_comp));

13 dbms_output.put_line('Row Count UnCompressed: ' || TO_CHAR(row_uncmp));

14 dbms_output.put_line('Block Count Compressed: ' || TO_CHAR(cmp_ratio));

15 dbms_output.put_line('Compression Type: ' || comptype);

16* END;

17 /

Block Count Compressed: 1749

Block Count UnCompressed: 1894

Row Count Compressed: 58

Row Count UnCompressed: 53

Block Count Compressed: 1

Compression Type: "Compress Advanced"

PL/SQL procedure successfully completed.

'SOURCE$', NULL, dbms_compression.comp_advanced, blkcnt_cmp,

blkcnt_uncmp, row_comp, row_uncmp, cmp_ratio, comptype);

10 dbms_output.put_line('Block Count Compressed: ' || TO_CHAR(blkcnt_cmp));

11 dbms_output.put_line('Block Count UnCompressed: ' || TO_CHAR(blkcnt_uncmp));

12 dbms_output.put_line('Row Count Compressed: ' || TO_CHAR(row_comp));

13 dbms_output.put_line('Row Count UnCompressed: ' || TO_CHAR(row_uncmp));

14 dbms_output.put_line('Block Count Compressed: ' || TO_CHAR(cmp_ratio));

15 dbms_output.put_line('Compression Type: ' || comptype);

16* END;

17 /

Block Count Compressed: 1749

Block Count UnCompressed: 1894

Row Count Compressed: 58

Row Count UnCompressed: 53

Block Count Compressed: 1

Compression Type: "Compress Advanced"

PL/SQL procedure successfully completed.

� DBMS_SPACE Built-In Package
� Fully documented and supported

� FREE_BLOCKS

� SPACE_USAGE

� UNUSED_SPACE

� VERIFY_SHRINK_CANDIDATE

� VERIFY_SHRINK_CANDIDATE_TBF

In-Object Space Wastage (4:6)

7676

� No wastage

In-Object Space Wastage (5:6)

SQL> DECLARE

2 uf NUMBER;

3 ub NUMBER;

4 f1 NUMBER;

5 f1b NUMBER;

6 f2 NUMBER;

7 f2b NUMBER;

8 f3 NUMBER;

9 f3b NUMBER;

10 f4 NUMBER;

11 f4b NUMBER;

12 fbl NUMBER;

13 fby NUMBER;

14 BEGIN

15 dbms_space.space_usage('UWCLASS','SERVERS', 'TABLE', uf, ub, f1, f1b, f2, f2b, f3, f3b, f4, f4b, fbl, fby);

16

17 dbms_output.put_line('unformatted blocks: ' || TO_CHAR(uf));

18 dbms_output.put_line('unformatted bytes: ' || TO_CHAR(ub));

19 dbms_output.put_line('blocks 0-25% free: ' || TO_CHAR(f1));

20 dbms_output.put_line('bytes 0-25% free: ' || TO_CHAR(f1b));

21 dbms_output.put_line('blocks 25-50% free: ' || TO_CHAR(f2));

22 dbms_output.put_line('bytes 25-50% free: ' || TO_CHAR(f2b));

SQL> DECLARE

2 uf NUMBER;

3 ub NUMBER;

4 f1 NUMBER;

5 f1b NUMBER;

6 f2 NUMBER;

7 f2b NUMBER;

8 f3 NUMBER;

9 f3b NUMBER;

10 f4 NUMBER;

11 f4b NUMBER;

12 fbl NUMBER;

13 fby NUMBER;

14 BEGIN

15 dbms_space.space_usage('UWCLASS','SERVERS', 'TABLE', uf, ub, f1, f1b, f2, f2b, f3, f3b, f4, f4b, fbl, fby);

16

17 dbms_output.put_line('unformatted blocks: ' || TO_CHAR(uf));

18 dbms_output.put_line('unformatted bytes: ' || TO_CHAR(ub));

19 dbms_output.put_line('blocks 0-25% free: ' || TO_CHAR(f1));

20 dbms_output.put_line('bytes 0-25% free: ' || TO_CHAR(f1b));

21 dbms_output.put_line('blocks 25-50% free: ' || TO_CHAR(f2));

22 dbms_output.put_line('bytes 25-50% free: ' || TO_CHAR(f2b));

7777

22 dbms_output.put_line('bytes 25-50% free: ' || TO_CHAR(f2b));

23 dbms_output.put_line('blocks 50-75% free: ' || TO_CHAR(f3));

24 dbms_output.put_line('bytes 50-75% free: ' || TO_CHAR(f3b));

25 dbms_output.put_line('blocks 75-100% free: ' || TO_CHAR(f4));

26 dbms_output.put_line('bytes 75-100% free: ' || TO_CHAR(f4b));

27 dbms_output.put_line('full blocks: ' || TO_CHAR(fbl));

28 dbms_output.put_line('full bytes: ' || TO_CHAR(fby));

29 END;

30 /

unformatted blocks: 0

unformatted bytes: 0

blocks 0-25% free: 0

bytes 0-25% free: 0

blocks 25-50% free: 0

bytes 25-50% free: 0

blocks 50-75% free: 0

bytes 50-75% free: 0

blocks 75-100% free: 0

bytes 75-100% free: 0

full blocks: 2

full bytes: 16384

22 dbms_output.put_line('bytes 25-50% free: ' || TO_CHAR(f2b));

23 dbms_output.put_line('blocks 50-75% free: ' || TO_CHAR(f3));

24 dbms_output.put_line('bytes 50-75% free: ' || TO_CHAR(f3b));

25 dbms_output.put_line('blocks 75-100% free: ' || TO_CHAR(f4));

26 dbms_output.put_line('bytes 75-100% free: ' || TO_CHAR(f4b));

27 dbms_output.put_line('full blocks: ' || TO_CHAR(fbl));

28 dbms_output.put_line('full bytes: ' || TO_CHAR(fby));

29 END;

30 /

unformatted blocks: 0

unformatted bytes: 0

blocks 0-25% free: 0

bytes 0-25% free: 0

blocks 25-50% free: 0

bytes 25-50% free: 0

blocks 50-75% free: 0

bytes 50-75% free: 0

blocks 75-100% free: 0

bytes 75-100% free: 0

full blocks: 2

full bytes: 16384

� Minor wastage

In-Object Space Wastage (6:6)

SQL> DECLARE

2 uf NUMBER;

3 ub NUMBER;

4 f1 NUMBER;

5 f1b NUMBER;

6 f2 NUMBER;

7 f2b NUMBER;

8 f3 NUMBER;

9 f3b NUMBER;

10 f4 NUMBER;

11 f4b NUMBER;

12 fbl NUMBER;

13 fby NUMBER;

14 BEGIN

15 dbms_space.space_usage('XDB','X$QN40ORNNWS4T9IVANV2GK293AFHS', 'TABLE', uf, ub, f1, f1b, f2, f2b, f3, f3b, f4, f4b, fbl, fby);

16

17 dbms_output.put_line('unformatted blocks: ' || TO_CHAR(uf));

18 dbms_output.put_line('unformatted bytes: ' || TO_CHAR(ub));

19 dbms_output.put_line('blocks 0-25% free: ' || TO_CHAR(f1));

20 dbms_output.put_line('bytes 0-25% free: ' || TO_CHAR(f1b));

21 dbms_output.put_line('blocks 25-50% free: ' || TO_CHAR(f2));

22 dbms_output.put_line('bytes 25-50% free: ' || TO_CHAR(f2b));

SQL> DECLARE

2 uf NUMBER;

3 ub NUMBER;

4 f1 NUMBER;

5 f1b NUMBER;

6 f2 NUMBER;

7 f2b NUMBER;

8 f3 NUMBER;

9 f3b NUMBER;

10 f4 NUMBER;

11 f4b NUMBER;

12 fbl NUMBER;

13 fby NUMBER;

14 BEGIN

15 dbms_space.space_usage('XDB','X$QN40ORNNWS4T9IVANV2GK293AFHS', 'TABLE', uf, ub, f1, f1b, f2, f2b, f3, f3b, f4, f4b, fbl, fby);

16

17 dbms_output.put_line('unformatted blocks: ' || TO_CHAR(uf));

18 dbms_output.put_line('unformatted bytes: ' || TO_CHAR(ub));

19 dbms_output.put_line('blocks 0-25% free: ' || TO_CHAR(f1));

20 dbms_output.put_line('bytes 0-25% free: ' || TO_CHAR(f1b));

21 dbms_output.put_line('blocks 25-50% free: ' || TO_CHAR(f2));

22 dbms_output.put_line('bytes 25-50% free: ' || TO_CHAR(f2b));

7878

22 dbms_output.put_line('bytes 25-50% free: ' || TO_CHAR(f2b));

23 dbms_output.put_line('blocks 50-75% free: ' || TO_CHAR(f3));

24 dbms_output.put_line('bytes 50-75% free: ' || TO_CHAR(f3b));

25 dbms_output.put_line('blocks 75-100% free: ' || TO_CHAR(f4));

26 dbms_output.put_line('bytes 75-100% free: ' || TO_CHAR(f4b));

27 dbms_output.put_line('full blocks: ' || TO_CHAR(fbl));

28 dbms_output.put_line('full bytes: ' || TO_CHAR(fby));

29 END;

30 /

unformatted blocks: 0

unformatted bytes: 0

blocks 0-25% free: 0

bytes 0-25% free: 0

blocks 25-50% free: 0

bytes 25-50% free: 0

blocks 50-75% free: 1

bytes 50-75% free: 8192

blocks 75-100% free: 2

bytes 75-100% free: 16384

full blocks: 2

full bytes: 16384

22 dbms_output.put_line('bytes 25-50% free: ' || TO_CHAR(f2b));

23 dbms_output.put_line('blocks 50-75% free: ' || TO_CHAR(f3));

24 dbms_output.put_line('bytes 50-75% free: ' || TO_CHAR(f3b));

25 dbms_output.put_line('blocks 75-100% free: ' || TO_CHAR(f4));

26 dbms_output.put_line('bytes 75-100% free: ' || TO_CHAR(f4b));

27 dbms_output.put_line('full blocks: ' || TO_CHAR(fbl));

28 dbms_output.put_line('full bytes: ' || TO_CHAR(fby));

29 END;

30 /

unformatted blocks: 0

unformatted bytes: 0

blocks 0-25% free: 0

bytes 0-25% free: 0

blocks 25-50% free: 0

bytes 25-50% free: 0

blocks 50-75% free: 1

bytes 50-75% free: 8192

blocks 75-100% free: 2

bytes 75-100% free: 16384

full blocks: 2

full bytes: 16384

Other Storage Optimizations

� Oracle's default tablespace settings waste disk and create unnecessary I/O in
the vast majority of databases

� Default smallfile tablespaces should not be used in environments where the
number of datafiles, in a tablespace, increases over time

� Default table creations are almost always inefficient
� Heap tables are the default choice not necessarily the best choice

� Oracle optimizes data dictionary performance by clustering tables ... do you?

� New in 12c ... Attribute clustering specifies how to cluster data in close

7979

� New in 12c ... Attribute clustering specifies how to cluster data in close
physical proximity based on column contents which improves compression,
indexes, and zone maps

CREATE TABLE cluster_t (

rid NUMBER,

lname VARCHAR2(25),

state_prov VARCHAR2(2))

CLUSTERING BY LINEAR ORDER (state_prov) WITH MATERIALIZED ZONEMAP;

CREATE TABLE cluster_t (

rid NUMBER,

lname VARCHAR2(25),

state_prov VARCHAR2(2))

CLUSTERING BY LINEAR ORDER (state_prov) WITH MATERIALIZED ZONEMAP;

One Issue with Attribute Clustering

� Oops!

SQL> drop table cluster_t purge;

Table dropped.

SQL> CREATE TABLE cluster_t (

2 rid NUMBER,

3 lname VARCHAR2(25),

4 state_prov VARCHAR2(2))

5 CLUSTERING BY LINEAR ORDER (state_prov) WITH MATERIALIZED ZONEMAP;

CREATE TABLE cluster_t (

*

SQL> drop table cluster_t purge;

Table dropped.

SQL> CREATE TABLE cluster_t (

2 rid NUMBER,

3 lname VARCHAR2(25),

4 state_prov VARCHAR2(2))

5 CLUSTERING BY LINEAR ORDER (state_prov) WITH MATERIALIZED ZONEMAP;

CREATE TABLE cluster_t (

*

8080

� Opening an SR

*

ERROR at line 1:

ORA-01031: insufficient privileges

SQL> desc cluster_t

Name Null? Type

------------------------- -------- -------------

RID NUMBER

LNAME VARCHAR2(25)

STATE_PROV VARCHAR2(2)

*

ERROR at line 1:

ORA-01031: insufficient privileges

SQL> desc cluster_t

Name Null? Type

------------------------- -------- -------------

RID NUMBER

LNAME VARCHAR2(25)

STATE_PROV VARCHAR2(2)

81

SQL

I'm Not Afraid To Show You Mine

8282

Page One

8383

Page Two

8484

Page Three

8585

Page Four

8686

Page Five

8787

Optimizer Plans (1:4)

SELECT DISTINCT E1_2.OBJECT_ID

FROM PMCM.ELEMENT_DETAIL E1_1, PMCM.ELEMENT_DETAIL E1_2, PMCM.MARK_NETW_HIERARCHY H1,

PMCM.ELEMENT_DETAIL E2_1, PMCM.ELEMENT_DETAIL E2_2, PMCM.MARK_NETW_HIERARCHY H2

WHERE E1_1.OBJECT_ID = H1.PARENT_ID

AND E1_2.OBJECT_ID = H1.OBJECT_ID

AND E2_1.OBJECT_ID = H2.PARENT_ID

AND E2_2.OBJECT_ID = H2.OBJECT_ID

AND E1_1.CURRENT_IND = 'Y' AND E2_1.CURRENT_IND = 'Y'

AND E2_1.CURRENT_IND = 'Y' AND E2_2.CURRENT_IND = 'Y'

AND H1.CURRENT_IND = 'Y' AND H2.CURRENT_IND = 'Y'

AND H1.HIERARCHY_TYPE = 'NETWORK' AND H2.HIERARCHY_TYPE = 'NETWORK'

AND H1.PARENT_TYPE IN ('BSC','RNC') AND H2.PARENT_TYPE IN ('BSC','RNC')

AND E2_2.ELEMENT_TYPE = 'CELL' AND E1_2.ELEMENT_TYPE = 'CELL'

AND H1.PARENT_TYPE IN ('BSC','RNC')

AND E1_1.ELEMENT_NAME = E2_1.ELEMENT_NAME

AND E1_1.ELEMENT_ID = E2_1.ELEMENT_ID

AND E1_2.ELEMENT_NAME = E2_2.ELEMENT_NAME

AND E1_2.ELEMENT_ID = E2_2.ELEMENT_ID

AND E1_2.USEID LIKE '*%' AND E2_2.USEID NOT LIKE '*%';

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time | Pstart| Pstop |

| 0 | SELECT STATEMENT | | 1 | 78 | | 74M (40)| 50:54:42 | | |

| 1 | TEMP TABLE TRANSFORMATION | | | | | | | | |

| 2 | LOAD AS SELECT | | | | | | | | |

SELECT DISTINCT E1_2.OBJECT_ID

FROM PMCM.ELEMENT_DETAIL E1_1, PMCM.ELEMENT_DETAIL E1_2, PMCM.MARK_NETW_HIERARCHY H1,

PMCM.ELEMENT_DETAIL E2_1, PMCM.ELEMENT_DETAIL E2_2, PMCM.MARK_NETW_HIERARCHY H2

WHERE E1_1.OBJECT_ID = H1.PARENT_ID

AND E1_2.OBJECT_ID = H1.OBJECT_ID

AND E2_1.OBJECT_ID = H2.PARENT_ID

AND E2_2.OBJECT_ID = H2.OBJECT_ID

AND E1_1.CURRENT_IND = 'Y' AND E2_1.CURRENT_IND = 'Y'

AND E2_1.CURRENT_IND = 'Y' AND E2_2.CURRENT_IND = 'Y'

AND H1.CURRENT_IND = 'Y' AND H2.CURRENT_IND = 'Y'

AND H1.HIERARCHY_TYPE = 'NETWORK' AND H2.HIERARCHY_TYPE = 'NETWORK'

AND H1.PARENT_TYPE IN ('BSC','RNC') AND H2.PARENT_TYPE IN ('BSC','RNC')

AND E2_2.ELEMENT_TYPE = 'CELL' AND E1_2.ELEMENT_TYPE = 'CELL'

AND H1.PARENT_TYPE IN ('BSC','RNC')

AND E1_1.ELEMENT_NAME = E2_1.ELEMENT_NAME

AND E1_1.ELEMENT_ID = E2_1.ELEMENT_ID

AND E1_2.ELEMENT_NAME = E2_2.ELEMENT_NAME

AND E1_2.ELEMENT_ID = E2_2.ELEMENT_ID

AND E1_2.USEID LIKE '*%' AND E2_2.USEID NOT LIKE '*%';

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time | Pstart| Pstop |

| 0 | SELECT STATEMENT | | 1 | 78 | | 74M (40)| 50:54:42 | | |

| 1 | TEMP TABLE TRANSFORMATION | | | | | | | | |

| 2 | LOAD AS SELECT | | | | | | | | |

8888

| 2 | LOAD AS SELECT | | | | | | | | |

| 3 | PARTITION RANGE ALL | | 22M| 1111M| | 38153 (11)| 00:01:34 | 1 | 29 |

|* 4 | TABLE ACCESS FULL | ELEMENT_DETAIL | 22M| 1111M| | 38153 (11)| 00:01:34 | | |

| 5 | LOAD AS SELECT | | | | | | | | |

| 6 | PARTITION HASH ALL | | 337K| 9231K| | 3514 (15)| 00:00:09 | 1 | 16 |

|* 7 | TABLE ACCESS FULL | MARK_NETW_HIERARCHY | 337K| 9231K| | 3514 (15)| 00:00:09 | | |

| 8 | SORT AGGREGATE | | 1 | 78 | | | | | |

|* 9 | HASH JOIN | | 927G| 65T| 534M| 74M (40)| 50:53:00 | | |

| 10 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 11 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485F_6A66C42E | 22M| 1111M| | 16808 (12)| 00 | | |

|* 12 | HASH JOIN | | 21G| 1272G| 534M| 1616K (43)| 01:06:04 | | |

| 13 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 14 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485F_6A66C42E | 22M| 1111M| | 16808 (12)| 0 | | |

|* 15 | HASH JOIN | | 476M| 23G| 524M| 97327 (22)| 00:03:59 | | |

|* 16 | HASH JOIN | | 10M| 401M| 8704K| 34520 (10)| 00:01:25 | | |

|* 17 | HASH JOIN | | 234K| 5948K| 8256K| 783 (10)| 00:00:02 | | |

| 18 | VIEW | | 337K| 4286K| | 142 (14)| 00:00:01 | | |

| 19 | TABLE ACCESS FULL | SYS_TEMP_0FDA74860_6A66C42E | 337K| 3956K| | 142 (14)| 00:00:01 | | |

| 20 | VIEW | | 337K| 4286K| | 142 (14)| 00:00:01 | | |

| 21 | TABLE ACCESS FULL | SYS_TEMP_0FDA74860_6A66C42E | 337K| 3956K| | 142 (14)| 00:00:01 | | |

| 22 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 23 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485F_6A66C42E | 22M| 1111M| | 16808 (12)| 00:00:42 | | |

| 24 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 25 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485F_6A66C42E | 22M| 1111M| | 16808 (12)| 0 | | |

| 2 | LOAD AS SELECT | | | | | | | | |

| 3 | PARTITION RANGE ALL | | 22M| 1111M| | 38153 (11)| 00:01:34 | 1 | 29 |

|* 4 | TABLE ACCESS FULL | ELEMENT_DETAIL | 22M| 1111M| | 38153 (11)| 00:01:34 | | |

| 5 | LOAD AS SELECT | | | | | | | | |

| 6 | PARTITION HASH ALL | | 337K| 9231K| | 3514 (15)| 00:00:09 | 1 | 16 |

|* 7 | TABLE ACCESS FULL | MARK_NETW_HIERARCHY | 337K| 9231K| | 3514 (15)| 00:00:09 | | |

| 8 | SORT AGGREGATE | | 1 | 78 | | | | | |

|* 9 | HASH JOIN | | 927G| 65T| 534M| 74M (40)| 50:53:00 | | |

| 10 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 11 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485F_6A66C42E | 22M| 1111M| | 16808 (12)| 00 | | |

|* 12 | HASH JOIN | | 21G| 1272G| 534M| 1616K (43)| 01:06:04 | | |

| 13 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 14 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485F_6A66C42E | 22M| 1111M| | 16808 (12)| 0 | | |

|* 15 | HASH JOIN | | 476M| 23G| 524M| 97327 (22)| 00:03:59 | | |

|* 16 | HASH JOIN | | 10M| 401M| 8704K| 34520 (10)| 00:01:25 | | |

|* 17 | HASH JOIN | | 234K| 5948K| 8256K| 783 (10)| 00:00:02 | | |

| 18 | VIEW | | 337K| 4286K| | 142 (14)| 00:00:01 | | |

| 19 | TABLE ACCESS FULL | SYS_TEMP_0FDA74860_6A66C42E | 337K| 3956K| | 142 (14)| 00:00:01 | | |

| 20 | VIEW | | 337K| 4286K| | 142 (14)| 00:00:01 | | |

| 21 | TABLE ACCESS FULL | SYS_TEMP_0FDA74860_6A66C42E | 337K| 3956K| | 142 (14)| 00:00:01 | | |

| 22 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 23 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485F_6A66C42E | 22M| 1111M| | 16808 (12)| 00:00:42 | | |

| 24 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 25 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485F_6A66C42E | 22M| 1111M| | 16808 (12)| 0 | | |

Optimizer Plans (2:4)

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time | Pstart| Pstop |

--

| 0 | SELECT STATEMENT | | 1 | 78 | | 14T(100)|999:59:59 | | |

| 1 | TEMP TABLE TRANSFORMATION | | | | | | | | |

| 2 | LOAD AS SELECT | | | | | | | | |

| 3 | PARTITION RANGE ALL | | 22M| 1111M| | 38153 (11)| 00:01:34 | 1 | 29 |

|* 4 | TABLE ACCESS FULL | ELEMENT_DETAIL | 22M| 1111M| | 38153 (11)| 00:01:34 | | |

| 5 | LOAD AS SELECT | | | | | | | | |

| 6 | PARTITION HASH ALL | | 337K| 9231K| | 3514 (15)| 00:00:09 | 1 | 16 |

|* 7 | TABLE ACCESS FULL | MARK_NETW_HIERARCHY | 337K| 9231K| | 3514 (15)| 00:00:09 | | |

| 8 | SORT AGGREGATE | | 1 | 78 | | | | | |

| 9 | MERGE JOIN | | 471P| 15E| | 14T(100)|999:59:59 | | |

| 10 | MERGE JOIN | | 10P| 616P| | 694G (81)|999:59:59 | | |

| 11 | MERGE JOIN | | 231T| 10P| | 377G (64)|999:59:59 | | |

| 12 | SORT JOIN | | 334T| 11P| 28P| 377G (64)|999:59:59 | | |

| 13 | MERGE JOIN CARTESIAN| | 334T| 11P| | 140G (14)|999:59:59 | | |

|* 14 | HASH JOIN | | 989M| 23G| 534M| 96010 (38)| 00:03:56 | | |

| 15 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time | Pstart| Pstop |

--

| 0 | SELECT STATEMENT | | 1 | 78 | | 14T(100)|999:59:59 | | |

| 1 | TEMP TABLE TRANSFORMATION | | | | | | | | |

| 2 | LOAD AS SELECT | | | | | | | | |

| 3 | PARTITION RANGE ALL | | 22M| 1111M| | 38153 (11)| 00:01:34 | 1 | 29 |

|* 4 | TABLE ACCESS FULL | ELEMENT_DETAIL | 22M| 1111M| | 38153 (11)| 00:01:34 | | |

| 5 | LOAD AS SELECT | | | | | | | | |

| 6 | PARTITION HASH ALL | | 337K| 9231K| | 3514 (15)| 00:00:09 | 1 | 16 |

|* 7 | TABLE ACCESS FULL | MARK_NETW_HIERARCHY | 337K| 9231K| | 3514 (15)| 00:00:09 | | |

| 8 | SORT AGGREGATE | | 1 | 78 | | | | | |

| 9 | MERGE JOIN | | 471P| 15E| | 14T(100)|999:59:59 | | |

| 10 | MERGE JOIN | | 10P| 616P| | 694G (81)|999:59:59 | | |

| 11 | MERGE JOIN | | 231T| 10P| | 377G (64)|999:59:59 | | |

| 12 | SORT JOIN | | 334T| 11P| 28P| 377G (64)|999:59:59 | | |

| 13 | MERGE JOIN CARTESIAN| | 334T| 11P| | 140G (14)|999:59:59 | | |

|* 14 | HASH JOIN | | 989M| 23G| 534M| 96010 (38)| 00:03:56 | | |

| 15 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

8989

| 15 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 16 | TABLE ACCESS FULL| SYS_TEMP_0FDA7485B_6A66C42E | 22M| 1111M| | 16808 (12)| 00:00:42 | | |

| 17 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 18 | TABLE ACCESS FULL| SYS_TEMP_0FDA7485B_6A66C42E | 22M| 1111M| | 16808 (12)| 00:00:42 | | |

| 19 | BUFFER SORT | | 337K| 4286K| | 140G (14)|999:59:59 | | |

| 20 | VIEW | | 337K| 4286K| | 142 (14)| 00:00:01 | | |

| 21 | TABLE ACCESS FULL| SYS_TEMP_0FDA7485C_6A66C42E | 337K| 3956K| | 142 (14)| 00:00:01 | | |

|* 22 | SORT JOIN | | 337K| 4286K| 12M| 844 (14)| 00:00:03 | | |

| 23 | VIEW | | 337K| 4286K| | 142 (14)| 00:00:01 | | |

| 24 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485C_6A66C42E | 337K| 3956K| | 142 (14)| 00:00:01 | | |

|* 25 | SORT JOIN | | 22M| 277M| 855M| 65084 (16)| 00:02:40 | | |

| 26 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 27 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485B_6A66C42E | 22M| 1111M| | 16808 (12)| 0 | | |

|* 28 | SORT JOIN | | 22M| 277M| 855M| 65084 (16)| 00:02:40 | | |

| 29 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 30 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485B_6A66C42E | 22M| 1111M| | 16808 (12)| 0 | | |

--

| 15 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 16 | TABLE ACCESS FULL| SYS_TEMP_0FDA7485B_6A66C42E | 22M| 1111M| | 16808 (12)| 00:00:42 | | |

| 17 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 18 | TABLE ACCESS FULL| SYS_TEMP_0FDA7485B_6A66C42E | 22M| 1111M| | 16808 (12)| 00:00:42 | | |

| 19 | BUFFER SORT | | 337K| 4286K| | 140G (14)|999:59:59 | | |

| 20 | VIEW | | 337K| 4286K| | 142 (14)| 00:00:01 | | |

| 21 | TABLE ACCESS FULL| SYS_TEMP_0FDA7485C_6A66C42E | 337K| 3956K| | 142 (14)| 00:00:01 | | |

|* 22 | SORT JOIN | | 337K| 4286K| 12M| 844 (14)| 00:00:03 | | |

| 23 | VIEW | | 337K| 4286K| | 142 (14)| 00:00:01 | | |

| 24 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485C_6A66C42E | 337K| 3956K| | 142 (14)| 00:00:01 | | |

|* 25 | SORT JOIN | | 22M| 277M| 855M| 65084 (16)| 00:02:40 | | |

| 26 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 27 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485B_6A66C42E | 22M| 1111M| | 16808 (12)| 0 | | |

|* 28 | SORT JOIN | | 22M| 277M| 855M| 65084 (16)| 00:02:40 | | |

| 29 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 30 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485B_6A66C42E | 22M| 1111M| | 16808 (12)| 0 | | |

--

Optimizer Plans (3:4)

WITH ed AS (SELECT object_id, element_id, element_name, element_type, useid

FROM pmcm.element_detail

WHERE element_type = 'CELL'

AND current_ind = 'Y'),

mnh AS (SELECT parent_id, object_id

FROM pmcm.mark_netw_hierarchy

WHERE current_ind = 'Y'

AND hierarchy_type = 'NETWORK'

AND parent_type IN ('BSC', 'RNC'))

SELECT COUNT(*)

FROM ed e1_1, ed e1_2, ed e2_1, ed e2_2, mnh h1, mnh h2

WHERE e1_1.object_id = h1.parent_id AND e1_2.object_id = h1.object_id

AND e2_1.object_id = h2.parent_id AND e2_2.object_id = h2.object_id

AND e1_1.element_name = e2_1.element_name

AND e1_1.element_id = e2_1.element_id

AND e1_2.element_name = e2_2.element_name

AND e1_2.element_id = e2_2.element_id

AND e1_2.useid LIKE '*%'

AND e2_2.useid NOT LIKE '*%';

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

WITH ed AS (SELECT object_id, element_id, element_name, element_type, useid

FROM pmcm.element_detail

WHERE element_type = 'CELL'

AND current_ind = 'Y'),

mnh AS (SELECT parent_id, object_id

FROM pmcm.mark_netw_hierarchy

WHERE current_ind = 'Y'

AND hierarchy_type = 'NETWORK'

AND parent_type IN ('BSC', 'RNC'))

SELECT COUNT(*)

FROM ed e1_1, ed e1_2, ed e2_1, ed e2_2, mnh h1, mnh h2

WHERE e1_1.object_id = h1.parent_id AND e1_2.object_id = h1.object_id

AND e2_1.object_id = h2.parent_id AND e2_2.object_id = h2.object_id

AND e1_1.element_name = e2_1.element_name

AND e1_1.element_id = e2_1.element_id

AND e1_2.element_name = e2_2.element_name

AND e1_2.element_id = e2_2.element_id

AND e1_2.useid LIKE '*%'

AND e2_2.useid NOT LIKE '*%';

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

9090

--

| 0 | SELECT STATEMENT | | 1 | 214 | | 100K (6)| 00:04:08 |

| 1 | HASH UNIQUE | | 1 | 214 | | 100K (6)| 00:04:08 |

|* 2 | HASH JOIN | | 1 | 214 | 12M| 100K (6)| 00:04:08 |

| 3 | PARTITION HASH ALL | | 337K| 9231K| | 3514 (15)| 00:00:09 |

|* 4 | TABLE ACCESS FULL | MARK_NETW_HIERARCHY | 337K| 9231K| | 3514 (15)| 00:00:00 |

|* 5 | HASH JOIN | | 207K| 36M| 22M| 95860 (6)| 00:03:56 |

| 6 | PARTITION RANGE ALL | | 586K| 15M| | 16233 (2)| 00:00:40 |

| 7 | TABLE ACCESS BY LOCAL INDEX ROWID | ELEMENT_DETAIL | 586K| 15M| | 16233 | ??:??:?? |

|* 8 | INDEX SKIP SCAN | ED_ET_TECH_CI | 586K| | | 12791 (1)| 00:00:3? |

|* 9 | HASH JOIN | | 207K| 31M| 22M| 77982 (7)| 00:03:12 |

| 10 | PARTITION RANGE ALL | | 586K| 15M| | 16233 (2)| 00:00:40 |

| 11 | TABLE ACCESS BY LOCAL INDEX ROWID | ELEMENT_DETAIL | 586K| 15M| | 16233 | ??:??:?? |

|* 12 | INDEX SKIP SCAN | ED_ET_TECH_CI | 586K| | | 12791 (1)| 00:00:?? |

|* 13 | HASH JOIN | | 179K| 22M| 12M| 60372 (8)| 00:02:29 |

| 14 | PARTITION HASH ALL | | 337K| 9231K| | 3514 (15)| 00:00:09 |

|* 15 | TABLE ACCESS FULL | MARK_NETW_HIERARCHY | 337K| 9231K| | 3514 (15)| 00:00:?? |

|* 16 | HASH JOIN | | 184K| 17M| 10M| 55886 (8)| 00:02:18 |

| 17 | PARTITION RANGE ALL | | 184K| 9008K| | 37137 (8)| 00:01:32 |

|* 18 | TABLE ACCESS FULL | ELEMENT_DETAIL | 184K| 9008K| | 37137 (8)| 00:01:32 |

| 19 | PARTITION RANGE ALL | | 576K| 28M| | 17383 (8)| 00:00:43 |

|* 20 | TABLE ACCESS BY LOCAL INDEX ROWID| ELEMENT_DETAIL | 576K| 28M| | 17383 (8)| ??:??:?? |

|* 21 | INDEX SKIP SCAN | ED_ET_TECH_CI | 583K| | | 13939 (9)| 00:00:35 |

--

--

| 0 | SELECT STATEMENT | | 1 | 214 | | 100K (6)| 00:04:08 |

| 1 | HASH UNIQUE | | 1 | 214 | | 100K (6)| 00:04:08 |

|* 2 | HASH JOIN | | 1 | 214 | 12M| 100K (6)| 00:04:08 |

| 3 | PARTITION HASH ALL | | 337K| 9231K| | 3514 (15)| 00:00:09 |

|* 4 | TABLE ACCESS FULL | MARK_NETW_HIERARCHY | 337K| 9231K| | 3514 (15)| 00:00:00 |

|* 5 | HASH JOIN | | 207K| 36M| 22M| 95860 (6)| 00:03:56 |

| 6 | PARTITION RANGE ALL | | 586K| 15M| | 16233 (2)| 00:00:40 |

| 7 | TABLE ACCESS BY LOCAL INDEX ROWID | ELEMENT_DETAIL | 586K| 15M| | 16233 | ??:??:?? |

|* 8 | INDEX SKIP SCAN | ED_ET_TECH_CI | 586K| | | 12791 (1)| 00:00:3? |

|* 9 | HASH JOIN | | 207K| 31M| 22M| 77982 (7)| 00:03:12 |

| 10 | PARTITION RANGE ALL | | 586K| 15M| | 16233 (2)| 00:00:40 |

| 11 | TABLE ACCESS BY LOCAL INDEX ROWID | ELEMENT_DETAIL | 586K| 15M| | 16233 | ??:??:?? |

|* 12 | INDEX SKIP SCAN | ED_ET_TECH_CI | 586K| | | 12791 (1)| 00:00:?? |

|* 13 | HASH JOIN | | 179K| 22M| 12M| 60372 (8)| 00:02:29 |

| 14 | PARTITION HASH ALL | | 337K| 9231K| | 3514 (15)| 00:00:09 |

|* 15 | TABLE ACCESS FULL | MARK_NETW_HIERARCHY | 337K| 9231K| | 3514 (15)| 00:00:?? |

|* 16 | HASH JOIN | | 184K| 17M| 10M| 55886 (8)| 00:02:18 |

| 17 | PARTITION RANGE ALL | | 184K| 9008K| | 37137 (8)| 00:01:32 |

|* 18 | TABLE ACCESS FULL | ELEMENT_DETAIL | 184K| 9008K| | 37137 (8)| 00:01:32 |

| 19 | PARTITION RANGE ALL | | 576K| 28M| | 17383 (8)| 00:00:43 |

|* 20 | TABLE ACCESS BY LOCAL INDEX ROWID| ELEMENT_DETAIL | 576K| 28M| | 17383 (8)| ??:??:?? |

|* 21 | INDEX SKIP SCAN | ED_ET_TECH_CI | 583K| | | 13939 (9)| 00:00:35 |

--

Optimizer Plans (4:4)

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | | | | 264T(100)| |

|* 1 | VIEW | | 156P| 15E| | 264T (79)|999:59:59 |

|* 2 | WINDOW SORT PUSHED RANK | | 156P| 15E| 15E| 264T (79)|999:59:59 |

| 3 | MERGE JOIN CARTESIAN | | 156P| 15E| | 68T (16)|999:59:59 |

| 4 | MERGE JOIN CARTESIAN | | 220G| 205T| | 96M (16)| 26:57:48 |

| 5 | MERGE JOIN CARTESIAN | | 310K| 302M| | 232 (11)| 00:00:01 |

| 6 | MERGE JOIN CARTESIAN | | 779 | 777K| | 22 (0)| 00:00:01 |

| 7 | NESTED LOOPS | | | | | | |

| 8 | NESTED LOOPS | | 2 | 2044 | | 20 (0)| 00:00:01 |

| 9 | NESTED LOOPS OUTER | | 2 | 1990 | | 18 (0)| 00:00:01 |

| 10 | NESTED LOOPS | | 2 | 1868 | | 17 (0)| 00:00:01 |

| 11 | NESTED LOOPS | | 2 | 1712 | | 15 (0)| 00:00:01 |

| 12 | NESTED LOOPS | | 2 | 1564 | | 13 (0)| 00:00:01 |

| 13 | MERGE JOIN CARTESIAN | | 2 | 1442 | | 11 (0)| 00:00:01 |

| 14 | NESTED LOOPS OUTER | | 1 | 625 | | 8 (0)| 00:00:01 |

| 15 | NESTED LOOPS OUTER | | 1 | 613 | | 7 (0)| 00:00:01 |

| 16 | NESTED LOOPS | | 1 | 580 | | 6 (0)| 00:00:01 |

| 17 | NESTED LOOPS OUTER | | 1 | 539 | | 5 (0)| 00:00:01 |

| 18 | NESTED LOOPS OUTER | | 1 | 340 | | 5 (0)| 00:00:01 |

| 19 | TABLE ACCESS BY INDEX ROWID| PA_STUDENT | 1 | 316 | | 3 (0)| 00:00:01 |

|* 20 | INDEX UNIQUE SCAN | PK_STUDENT | 1 | | | 2 (0)| 00:00:01 |

| 21 | TABLE ACCESS BY INDEX ROWID| PA_STUD_USER | 1 | 24 | | 2 (0)| 00:00:01 |

|* 22 | INDEX UNIQUE SCAN | PK_STUD_USER | 1 | | | 1 (0)| 00:00:01 |

| 23 | TABLE ACCESS BY INDEX ROWID | PA_ORG | 1 | 199 | | 0 (0)| |

|* 24 | INDEX UNIQUE SCAN | PK_ORG | 1 | | | 0 (0)| |

| 25 | TABLE ACCESS BY INDEX ROWID | PA_DOMAIN | 13 | 533 | | 1 (0)| 00:00:01 |

|* 26 | INDEX UNIQUE SCAN | PK_DOMAIN | 1 | | | 0 (0)| |

| 27 | TABLE ACCESS BY INDEX ROWID | PA_USRRF_STUD | 100 | 3300 | | 1 (0)| 00:00:01 |

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | | | | 264T(100)| |

|* 1 | VIEW | | 156P| 15E| | 264T (79)|999:59:59 |

|* 2 | WINDOW SORT PUSHED RANK | | 156P| 15E| 15E| 264T (79)|999:59:59 |

| 3 | MERGE JOIN CARTESIAN | | 156P| 15E| | 68T (16)|999:59:59 |

| 4 | MERGE JOIN CARTESIAN | | 220G| 205T| | 96M (16)| 26:57:48 |

| 5 | MERGE JOIN CARTESIAN | | 310K| 302M| | 232 (11)| 00:00:01 |

| 6 | MERGE JOIN CARTESIAN | | 779 | 777K| | 22 (0)| 00:00:01 |

| 7 | NESTED LOOPS | | | | | | |

| 8 | NESTED LOOPS | | 2 | 2044 | | 20 (0)| 00:00:01 |

| 9 | NESTED LOOPS OUTER | | 2 | 1990 | | 18 (0)| 00:00:01 |

| 10 | NESTED LOOPS | | 2 | 1868 | | 17 (0)| 00:00:01 |

| 11 | NESTED LOOPS | | 2 | 1712 | | 15 (0)| 00:00:01 |

| 12 | NESTED LOOPS | | 2 | 1564 | | 13 (0)| 00:00:01 |

| 13 | MERGE JOIN CARTESIAN | | 2 | 1442 | | 11 (0)| 00:00:01 |

| 14 | NESTED LOOPS OUTER | | 1 | 625 | | 8 (0)| 00:00:01 |

| 15 | NESTED LOOPS OUTER | | 1 | 613 | | 7 (0)| 00:00:01 |

| 16 | NESTED LOOPS | | 1 | 580 | | 6 (0)| 00:00:01 |

| 17 | NESTED LOOPS OUTER | | 1 | 539 | | 5 (0)| 00:00:01 |

| 18 | NESTED LOOPS OUTER | | 1 | 340 | | 5 (0)| 00:00:01 |

| 19 | TABLE ACCESS BY INDEX ROWID| PA_STUDENT | 1 | 316 | | 3 (0)| 00:00:01 |

|* 20 | INDEX UNIQUE SCAN | PK_STUDENT | 1 | | | 2 (0)| 00:00:01 |

| 21 | TABLE ACCESS BY INDEX ROWID| PA_STUD_USER | 1 | 24 | | 2 (0)| 00:00:01 |

|* 22 | INDEX UNIQUE SCAN | PK_STUD_USER | 1 | | | 1 (0)| 00:00:01 |

| 23 | TABLE ACCESS BY INDEX ROWID | PA_ORG | 1 | 199 | | 0 (0)| |

|* 24 | INDEX UNIQUE SCAN | PK_ORG | 1 | | | 0 (0)| |

| 25 | TABLE ACCESS BY INDEX ROWID | PA_DOMAIN | 13 | 533 | | 1 (0)| 00:00:01 |

|* 26 | INDEX UNIQUE SCAN | PK_DOMAIN | 1 | | | 0 (0)| |

| 27 | TABLE ACCESS BY INDEX ROWID | PA_USRRF_STUD | 100 | 3300 | | 1 (0)| 00:00:01 |

9191

| 27 | TABLE ACCESS BY INDEX ROWID | PA_USRRF_STUD | 100 | 3300 | | 1 (0)| 00:00:01 |

|* 28 | INDEX UNIQUE SCAN | PK_USRRF_STUD | 1 | | | 0 (0)| |

| 29 | VIEW PUSHED PREDICATE | PV_STUD_USER | 1 | 12 | | 1 (0)| 00:00:01 |

|* 30 | FILTER | | | | | | |

| 31 | NESTED LOOPS OUTER | | 1 | 22 | | 264 (11)| 00:00:01 |

|* 32 | INDEX UNIQUE SCAN | PK_STUDENT | 1 | 10 | | 2 (0)| 00:00:01 |

|* 33 | MAT_VIEW ACCESS FULL | PV_AP_STUD_USER | 1 | 12 | | 262 (11)| 00:00:01 |

| 34 | BUFFER SORT | | 2 | 192 | | 10 (0)| 00:00:01 |

| 35 | TABLE ACCESS BY INDEX ROWID | PA_CPNT_COMPLIANCE_DATA | 2 | 192 | | 3 (0)| 00:00:01 |

|* 36 | INDEX RANGE SCAN | IX_CPNT_CD__EVTHST | 2 | | | 1 (0)| 00:00:01 |

| 37 | TABLE ACCESS BY INDEX ROWID | PA_CPNT_TYPE | 1 | 61 | | 1 (0)| 00:00:01 |

|* 38 | INDEX UNIQUE SCAN | PK_CPNT_TYPE | 1 | | | 0 (0)| |

| 39 | TABLE ACCESS BY INDEX ROWID | PA_RQMT_TYPE | 1 | 74 | | 1 (0)| 00:00:01 |

|* 40 | INDEX UNIQUE SCAN | PK_RQMT_TYPE | 1 | | | 0 (0)| |

| 41 | TABLE ACCESS BY INDEX ROWID | PA_CMPL_STAT | 1 | 78 | | 1 (0)| 00:00:01 |

|* 42 | INDEX UNIQUE SCAN | PK_CMPL_STAT | 1 | | | 0 (0)| |

| 43 | TABLE ACCESS BY INDEX ROWID | PA_QUAL | 1 | 61 | | 1 (0)| 00:00:01 |

|* 44 | INDEX UNIQUE SCAN | PK_QUAL | 1 | | | 0 (0)| |

|* 45 | INDEX UNIQUE SCAN | PK_CPNT | 1 | | | 0 (0)| |

| 46 | TABLE ACCESS BY INDEX ROWID | PA_CPNT | 1 | 27 | | 1 (0)| 00:00:01 |

| 47 | BUFFER SORT | | 399 | | | 21 (0)| 00:00:01 |

| 48 | INDEX FAST FULL SCAN | PK_USRRF_STUD | 399 | | | 1 (0)| 00:00:01 |

| 49 | BUFFER SORT | | 399 | | | 231 (11)| 00:00:01 |

| 50 | INDEX FAST FULL SCAN | PK_USRRF_STUD | 399 | | | 0 (0)| |

| 51 | BUFFER SORT | | 710K| | | 96M (16)| 26:57:48 |

| 52 | INDEX FAST FULL SCAN | IX_STUD_USER__STUDENT | 710K| | | 309 (16)| 00:00:01 |

| 53 | BUFFER SORT | | 710K| | | 264T (79)|999:59:59 |

| 54 | INDEX FAST FULL SCAN | IX_STUD_USER__STUDENT | 710K| | | 309 (16)| 00:00:01 |

| 27 | TABLE ACCESS BY INDEX ROWID | PA_USRRF_STUD | 100 | 3300 | | 1 (0)| 00:00:01 |

|* 28 | INDEX UNIQUE SCAN | PK_USRRF_STUD | 1 | | | 0 (0)| |

| 29 | VIEW PUSHED PREDICATE | PV_STUD_USER | 1 | 12 | | 1 (0)| 00:00:01 |

|* 30 | FILTER | | | | | | |

| 31 | NESTED LOOPS OUTER | | 1 | 22 | | 264 (11)| 00:00:01 |

|* 32 | INDEX UNIQUE SCAN | PK_STUDENT | 1 | 10 | | 2 (0)| 00:00:01 |

|* 33 | MAT_VIEW ACCESS FULL | PV_AP_STUD_USER | 1 | 12 | | 262 (11)| 00:00:01 |

| 34 | BUFFER SORT | | 2 | 192 | | 10 (0)| 00:00:01 |

| 35 | TABLE ACCESS BY INDEX ROWID | PA_CPNT_COMPLIANCE_DATA | 2 | 192 | | 3 (0)| 00:00:01 |

|* 36 | INDEX RANGE SCAN | IX_CPNT_CD__EVTHST | 2 | | | 1 (0)| 00:00:01 |

| 37 | TABLE ACCESS BY INDEX ROWID | PA_CPNT_TYPE | 1 | 61 | | 1 (0)| 00:00:01 |

|* 38 | INDEX UNIQUE SCAN | PK_CPNT_TYPE | 1 | | | 0 (0)| |

| 39 | TABLE ACCESS BY INDEX ROWID | PA_RQMT_TYPE | 1 | 74 | | 1 (0)| 00:00:01 |

|* 40 | INDEX UNIQUE SCAN | PK_RQMT_TYPE | 1 | | | 0 (0)| |

| 41 | TABLE ACCESS BY INDEX ROWID | PA_CMPL_STAT | 1 | 78 | | 1 (0)| 00:00:01 |

|* 42 | INDEX UNIQUE SCAN | PK_CMPL_STAT | 1 | | | 0 (0)| |

| 43 | TABLE ACCESS BY INDEX ROWID | PA_QUAL | 1 | 61 | | 1 (0)| 00:00:01 |

|* 44 | INDEX UNIQUE SCAN | PK_QUAL | 1 | | | 0 (0)| |

|* 45 | INDEX UNIQUE SCAN | PK_CPNT | 1 | | | 0 (0)| |

| 46 | TABLE ACCESS BY INDEX ROWID | PA_CPNT | 1 | 27 | | 1 (0)| 00:00:01 |

| 47 | BUFFER SORT | | 399 | | | 21 (0)| 00:00:01 |

| 48 | INDEX FAST FULL SCAN | PK_USRRF_STUD | 399 | | | 1 (0)| 00:00:01 |

| 49 | BUFFER SORT | | 399 | | | 231 (11)| 00:00:01 |

| 50 | INDEX FAST FULL SCAN | PK_USRRF_STUD | 399 | | | 0 (0)| |

| 51 | BUFFER SORT | | 710K| | | 96M (16)| 26:57:48 |

| 52 | INDEX FAST FULL SCAN | IX_STUD_USER__STUDENT | 710K| | | 309 (16)| 00:00:01 |

| 53 | BUFFER SORT | | 710K| | | 264T (79)|999:59:59 |

| 54 | INDEX FAST FULL SCAN | IX_STUD_USER__STUDENT | 710K| | | 309 (16)| 00:00:01 |

Poorly Written Applications

� There's nothing wrong with the SQL ... but there is definitely something wrong

SELECT /*+ RESULT_CACHE */ srvr_idSELECT /*+ RESULT_CACHE */ srvr_id

9292

SELECT /*+ RESULT_CACHE */ srvr_id

FROM (

SELECT srvr_id, SUM(cnt) SUMCNT

FROM (

SELECT DISTINCT srvr_id, 1 AS CNT

FROM servers

UNION ALL

SELECT DISTINCT srvr_id, 1

FROM serv_inst)

GROUP BY srvr_id)

WHERE sumcnt = 2;

SELECT /*+ RESULT_CACHE */ srvr_id

FROM (

SELECT srvr_id, SUM(cnt) SUMCNT

FROM (

SELECT DISTINCT srvr_id, 1 AS CNT

FROM servers

UNION ALL

SELECT DISTINCT srvr_id, 1

FROM serv_inst)

GROUP BY srvr_id)

WHERE sumcnt = 2;

more examples: www.morganslibrary.org/reference/pkgs/dbms_result_cache.html

Optimizer Settings

� Default Oracle install favors data warehouse not OLTP

SQL> show parameter optimizer_modeSQL> show parameter optimizer_mode

NAME TYPE VALUE

------------------------------------ ----------- -----------

optimizer_adaptive_features boolean TRUE

optimizer_adaptive_reporting_only boolean FALSE

optimizer_capture_sql_plan_baselines boolean FALSE

optimizer_dynamic_sampling integer 2

optimizer_features_enable string 12.1.0.2

optimizer_index_caching integer 0

optimizer_index_cost_adj integer 100

optimizer_mode string ALL_ROWS

optimizer_secure_view_merging boolean TRUE

optimizer_use_invisible_indexes boolean FALSE

optimizer_use_pending_statistics boolean FALSE

optimizer_use_sql_plan_baselines boolean TRUE

NAME TYPE VALUE

------------------------------------ ----------- -----------

optimizer_adaptive_features boolean TRUE

optimizer_adaptive_reporting_only boolean FALSE

optimizer_capture_sql_plan_baselines boolean FALSE

optimizer_dynamic_sampling integer 2

optimizer_features_enable string 12.1.0.2

optimizer_index_caching integer 0

optimizer_index_cost_adj integer 100

optimizer_mode string ALL_ROWS

optimizer_secure_view_merging boolean TRUE

optimizer_use_invisible_indexes boolean FALSE

optimizer_use_pending_statistics boolean FALSE

optimizer_use_sql_plan_baselines boolean TRUE

9393

SQL> show parameter optimizer_mode

NAME TYPE VALUE

------------------------------------ ----------- -------

--

optimizer_mode string

ALL_ROWS

SQL> ALTER SYSTEM SET OPTIMIZER_MODE='FIRST_ROWS_10';

System altered.

SQL> show parameter optimizer_mode

NAME TYPE VALUE

------------------------ ----------- --------------

optimizer_mode string FIRST_ROWS_10

SQL> show parameter optimizer_mode

NAME TYPE VALUE

------------------------------------ ----------- -------

--

optimizer_mode string

ALL_ROWS

SQL> ALTER SYSTEM SET OPTIMIZER_MODE='FIRST_ROWS_10';

System altered.

SQL> show parameter optimizer_mode

NAME TYPE VALUE

------------------------ ----------- --------------

optimizer_mode string FIRST_ROWS_10

Best for Data Warehouse

Best for OLTP

more examples: www.morganslibrary.org/reference/startup_parms.html

Optimizer Mode

� Establishes the default behavior for choosing an optimization approach for the
instance
� Maximum Throughput (Data Warehouse)

Best Response Time (loading a web page)

SQL> show parameter optimizer_mode

NAME TYPE VALUE

------------------------------------ ----------- ---------

optimizer_mode string ALL_ROWS

SQL> show parameter optimizer_mode

NAME TYPE VALUE

------------------------------------ ----------- ---------

optimizer_mode string ALL_ROWS

9494

SQL> ALTER SYSTEM SET OPTIMIZER_MODE='FIRST_ROWS_10';

System altered.

SQL> show parameter optimizer_mode

NAME TYPE VALUE

------------------------ ----------- --------------

optimizer_mode string FIRST_ROWS_10

SQL> ALTER SYSTEM SET OPTIMIZER_MODE='FIRST_ROWS_10';

System altered.

SQL> show parameter optimizer_mode

NAME TYPE VALUE

------------------------ ----------- --------------

optimizer_mode string FIRST_ROWS_10

95

Optimizer Statistics and Preferences

Optimizer Statistics

� Gather System Stats

� Gather Fixed Object Stats

� Gather Dictionary Stats

� Gather Table Stats

� Gather Column Stats

� Gather Index Stats

� Gather Extended Stats

� Stat Generation

� Copy Stats

SQL> select type, count(*)

2 from v$fixed_table

3 group by type

4 order by 1;

TYPE COUNT(*)

----- ----------

TABLE 1144

VIEW 1261

SQL> select name

9696

� Copy Stats

� Set Stats

� Fixing Stats

SQL> select name

2 from v$fixed_table

3 where rownum < 11;

NAME

X$KQFTA

X$KQFVI

X$KQFVT

X$KQFDT

X$KQFCO

X$KQFOPT

X$KYWMPCTAB

X$KYWMWRCTAB

X$KYWMCLTAB

X$KYWMNF

more examples: www.morganslibrary.org/reference/system_stats.html

Gathering Fixed Object Stats

� Gathers stats on "fixed objects"
� fixed_obj$

� v$fixed_table

dbms_stats.gather_fixed_objects_stats (

stattab IN VARCHAR2 DEFAULT NULL,

statid IN VARCHAR2 DEFAULT NULL,

statown IN VARCHAR2 DEFAULT NULL,

no_invalidate IN BOOLEAN DEFAULT

to_no_invalidate_type(get_param('NO_INVALIDATE')));

dbms_stats.gather_fixed_objects_stats (

stattab IN VARCHAR2 DEFAULT NULL,

statid IN VARCHAR2 DEFAULT NULL,

statown IN VARCHAR2 DEFAULT NULL,

no_invalidate IN BOOLEAN DEFAULT

to_no_invalidate_type(get_param('NO_INVALIDATE')));

SQL> SELECT type, count(*)

2 FROM v$fixed_table

3 GROUP BY type;

TYPE COUNT(*)

----- ----------

TABLE 1144

VIEW 1261

SQL> select name

2 from v$fixed_table

3 where rownum < 11;

NAME

SQL> SELECT type, count(*)

2 FROM v$fixed_table

3 GROUP BY type;

TYPE COUNT(*)

----- ----------

TABLE 1144

VIEW 1261

SQL> select name

2 from v$fixed_table

3 where rownum < 11;

NAME

9797

NAME

X$KQFTA

X$KQFVI

X$KQFVT

X$KQFDT

X$KQFCO

X$KQFOPT

X$KYWMPCTAB

X$KYWMWRCTAB

X$KYWMCLTAB

X$KYWMNF

NAME

X$KQFTA

X$KQFVI

X$KQFVT

X$KQFDT

X$KQFCO

X$KQFOPT

X$KYWMPCTAB

X$KYWMWRCTAB

X$KYWMCLTAB

X$KYWMNF

System Statistics

� System statistics are collected by the DBMS_STATS package only when the
procedure is manually executed

� If you do not have system stats collected then the optimizer has no information
about the server and
storage environment

SQL> exec dbms_stats.gather_system_stats('INTERVAL', 15);

SQL> SELECT * FROM sys.aux_stats$;

SNAME PNAME PVAL1 PVAL2

--------------- --------------- ---------- -----------------

SYSSTATS_INFO STATUS COMPLETED

SYSSTATS_INFO DSTART 05-27-2015 09:45

SQL> exec dbms_stats.gather_system_stats('INTERVAL', 15);

SQL> SELECT * FROM sys.aux_stats$;

SNAME PNAME PVAL1 PVAL2

--------------- --------------- ---------- -----------------

SYSSTATS_INFO STATUS COMPLETED

SYSSTATS_INFO DSTART 05-27-2015 09:45

9898

SYSSTATS_INFO DSTART 05-27-2015 09:45

SYSSTATS_INFO DSTOP 05-27-2015 09:51

SYSSTATS_INFO FLAGS 0

SYSSTATS_MAIN CPUSPEEDNW 3010

SYSSTATS_MAIN IOSEEKTIM 10

SYSSTATS_MAIN IOTFRSPEED 4096

SYSSTATS_MAIN SREADTIM 3.862

SYSSTATS_MAIN MREADTIM 1.362

SYSSTATS_MAIN CPUSPEED 2854

SYSSTATS_MAIN MBRC 17

SYSSTATS_MAIN MAXTHR

SYSSTATS_MAIN SLAVETHR

SYSSTATS_INFO DSTART 05-27-2015 09:45

SYSSTATS_INFO DSTOP 05-27-2015 09:51

SYSSTATS_INFO FLAGS 0

SYSSTATS_MAIN CPUSPEEDNW 3010

SYSSTATS_MAIN IOSEEKTIM 10

SYSSTATS_MAIN IOTFRSPEED 4096

SYSSTATS_MAIN SREADTIM 3.862

SYSSTATS_MAIN MREADTIM 1.362

SYSSTATS_MAIN CPUSPEED 2854

SYSSTATS_MAIN MBRC 17

SYSSTATS_MAIN MAXTHR

SYSSTATS_MAIN SLAVETHR

Processing Rates (1:2)

� Besides the amount of work the optimizer also needs to know the HW
characteristics of the system to understand how much time is needed to
complete that amount of work

� Consequently, the HW characteristics describe how much work a single
process can perform on that system, these are expressed as bytes per second
and rows per second and are called processing rates

� As they indicate a system's capability it means you will need fewer processes
(which means less DOP) for the same amount of work as these rates go
higher; the more powerful a system is, the less resources you need to process

9999

higher; the more powerful a system is, the less resources you need to process
the same statement in the same amount of time

� Processing rates are collected manually

SQL> exec dbms_stats.gather_processing_rate('START', 20);

SQL> SELECT operation_name, manual_value, calibration_value, default_value

2 FROM v$optimizer_processing_rate

3 ORDER BY 1;

SQL> exec dbms_stats.gather_processing_rate('START', 20);

SQL> SELECT operation_name, manual_value, calibration_value, default_value

2 FROM v$optimizer_processing_rate

3 ORDER BY 1;

Processing Rates (2:2)

OPERATION_NAME MANUAL_VAL CALIBRATIO DEFAULT_VA

------------------------- ---------- ---------- ----------

AGGR 1000.00000

ALL 200.00000

CPU 200.00000

CPU_ACCESS 200.00000

CPU_AGGR 200.00000

CPU_BYTES_PER_SEC 1000.00000

CPU_FILTER 200.00000

CPU_GBY 200.00000

CPU_HASH_JOIN 200.00000

CPU_IMC_BYTES_PER_SEC 2000.00000

CPU_IMC_ROWS_PER_SEC 2000000.00

CPU_JOIN 200.00000

CPU_NL_JOIN 200.00000

CPU_RANDOM_ACCESS 200.00000

CPU_ROWS_PER_SEC 1000000.00000

OPERATION_NAME MANUAL_VAL CALIBRATIO DEFAULT_VA

------------------------- ---------- ---------- ----------

AGGR 1000.00000

ALL 200.00000

CPU 200.00000

CPU_ACCESS 200.00000

CPU_AGGR 200.00000

CPU_BYTES_PER_SEC 1000.00000

CPU_FILTER 200.00000

CPU_GBY 200.00000

CPU_HASH_JOIN 200.00000

CPU_IMC_BYTES_PER_SEC 2000.00000

CPU_IMC_ROWS_PER_SEC 2000000.00

CPU_JOIN 200.00000

CPU_NL_JOIN 200.00000

CPU_RANDOM_ACCESS 200.00000

CPU_ROWS_PER_SEC 1000000.00000

� Processing Rate collection is new as
of version 12cR1

100100

CPU_ROWS_PER_SEC 1000000.00000

CPU_SEQUENTIAL_ACCESS 200.00000

CPU_SM_JOIN 200.00000

CPU_SORT 200.00000

HASH 200.00000

IO 200.00000

IO_ACCESS 200.00000

IO_BYTES_PER_SEC 200.00000

IO_IMC_ACCESS 1000.00000

IO_RANDOM_ACCESS 200.00000

IO_ROWS_PER_SEC 1000000.00000

IO_SEQUENTIAL_ACCESS 200.00000

MEMCMP 500.00000

MEMCPY 1000.00000

SQL> exec dbms_stats.set_processing_rate('IO', 100);

CPU_ROWS_PER_SEC 1000000.00000

CPU_SEQUENTIAL_ACCESS 200.00000

CPU_SM_JOIN 200.00000

CPU_SORT 200.00000

HASH 200.00000

IO 200.00000

IO_ACCESS 200.00000

IO_BYTES_PER_SEC 200.00000

IO_IMC_ACCESS 1000.00000

IO_RANDOM_ACCESS 200.00000

IO_ROWS_PER_SEC 1000000.00000

IO_SEQUENTIAL_ACCESS 200.00000

MEMCMP 500.00000

MEMCPY 1000.00000

SQL> exec dbms_stats.set_processing_rate('IO', 100);

� DBMS_STATS.GET_PREFS returns the current preference for the identified
parameter

� Parameters for which preferences can be set are CASCADE, DEGREE,
ESTIMATE_PERCENT, METHOD_OPT, and NO_INVALIDATE

Getting Optimizer Preferences

SQL> SELECT dbms_stats.get_prefs('METHOD_OPT', USER)

2 FROM dual;

SQL> SELECT dbms_stats.get_prefs('METHOD_OPT', USER)

2 FROM dual;

dbms_stats.get_prefs(

pname IN VARCHAR2,

ownname IN VARCHAR2 DEFAULT NULL,

tabname IN VARCHAR2 DEFAULT NULL)

RETURN VARCHAR2;

dbms_stats.get_prefs(

pname IN VARCHAR2,

ownname IN VARCHAR2 DEFAULT NULL,

tabname IN VARCHAR2 DEFAULT NULL)

RETURN VARCHAR2;

101101

DBMS_STATS.GET_PREFS('METHOD_OPT',USER)

--

FOR ALL COLUMNS SIZE AUTO

SQL> SELECT dbms_stats.get_prefs('CASCADE', USER, 'SERVERS')

2 FROM dual;

DBMS_STATS.GET_PREFS('CASCADE',USER,'SERVERS')

DBMS_STATS.AUTO_CASCADE

DBMS_STATS.GET_PREFS('METHOD_OPT',USER)

--

FOR ALL COLUMNS SIZE AUTO

SQL> SELECT dbms_stats.get_prefs('CASCADE', USER, 'SERVERS')

2 FROM dual;

DBMS_STATS.GET_PREFS('CASCADE',USER,'SERVERS')

DBMS_STATS.AUTO_CASCADE

� Optimizer preferences can bet set at the GLOBAL, DATABASE, SCHEMA,
and TABLE levels

� Syntax

� Examples

Setting Optimizer Preferences

dbms_stats.set_table_prefs(

ownname IN VARCHAR2,

tabname IN VARCHAR2,

pname IN VARCHAR2,

pvalue IN VARCHAR2);

dbms_stats.set_table_prefs(

ownname IN VARCHAR2,

tabname IN VARCHAR2,

pname IN VARCHAR2,

pvalue IN VARCHAR2);

exec dbms_stats.set_table_prefs(USER, 'SERVERS', 'CASCADE', 'DBMS_STATS.AUTO_CASCADE');exec dbms_stats.set_table_prefs(USER, 'SERVERS', 'CASCADE', 'DBMS_STATS.AUTO_CASCADE');

102102

� The larger the table the smaller the sample size (ESTIMATE_PERCENT) and
the larger the degree of parallelism (DEGREE) to consider

exec dbms_stats.set_table_prefs(USER, 'SERVERS', 'ESTIMATE_PERCENT','90');

exec dbms_stats.set_table_prefs(USER, 'SERVERS', 'DEGREE','8');

exec dbms_stats.set_table_prefs(USER, 'SERVERS', 'ESTIMATE_PERCENT','90');

exec dbms_stats.set_table_prefs(USER, 'SERVERS', 'DEGREE','8');

Create Extended Stats

� Where WHERE clause predicates utilize more than a single table column
collect extended stats

� Allows for the creation of stats that relate to a data distribution across multiple
columns in a single table

SELECT dbms_stats.create_extended_stats(USER, 'SERV_INST', '(srvr_id, si_status)')

FROM dual;

SELECT dbms_stats.create_extended_stats(USER, 'SERV_INST', '(srvr_id, si_status)')

FROM dual;

103103

more examples: www.morganslibrary.org/reference/pkgs/dbms_stats.html

Manufacture Optimizer Statistics

� Creating a new table or partition?
� If you know approximately what will be in it when it is full set the statistics when you create

it

� If working in a DEV or TEST environment set or import stats to make these environments
"look" more like production

exec dbms_stats.set_table_stats(USER, 'EMP', numrows=>1000000, numblks=>10000, avgrlen=>74);exec dbms_stats.set_table_stats(USER, 'EMP', numrows=>1000000, numblks=>10000, avgrlen=>74);

Average Row Length
Numerical Distribution

104104

more examples: www.morganslibrary.org/reference/pkgs/dbms_stats.html

exec dbms_stats.set_table_stats(USER, 'EMP', numrows=>1000000, numblks=>10000, avgrlen=>74);

exec dbms_stats.set_index_stats(USER, 'ix_emp_deptno', numrows=>1000000, numlblks=>1000, numdist=>10000, clstfct=>1);

exec dbms_stats.set_column_stats(USER, 'emp', 'deptno', distcnt=>10000);

exec dbms_stats.set_table_stats(USER, 'dept', numrows=>100, numblks=>100);

exec dbms_stats.set_table_stats(USER, 'EMP', numrows=>1000000, numblks=>10000, avgrlen=>74);

exec dbms_stats.set_index_stats(USER, 'ix_emp_deptno', numrows=>1000000, numlblks=>1000, numdist=>10000, clstfct=>1);

exec dbms_stats.set_column_stats(USER, 'emp', 'deptno', distcnt=>10000);

exec dbms_stats.set_table_stats(USER, 'dept', numrows=>100, numblks=>100);

Number of rows Number of blocks Clustering Factor
Number of distinct values

105

Explain Plan and Diagnostics

Root Cause Analysis by Sophisticated Guessing

� Check data dictionary for collected stats

� Explain Plans
� Very few people can read them ... I will prove it next

� AWR Reports
� Data <> Information

� If you want value from AWR ... create AWR Difference reports with
DBMS_WORKLOAD_REPOSITORY.AWR_DIFF_REPORT_HTML

� ADDM Difference Reports

106106

� ADDM Difference Reports

� ASH Reports

� SQL Tuning Advisor

� SQL Trace and TKPROF

� Baselines and Evolving Baselines

� DBMS_TRACE, DBMS_MONITOR, TRCSESS, TRACE ANALYZER,
SQLTXPLAIN

Reading Explain Plans

� Very few people can read an explain plan

� Here are two plans from identical tables with identical stats

� Which one would you rely on?

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

Database 11gR2

The SQL Statement

107107

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | 141 | 4560 | 20 (10)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE | | 141 | 564 | 10 (10)|

| 3 | TABLE ACCESS FULL | SERVERS | 141 | 564 | 9 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 10 (10)|

| 5 | TABLE ACCESS FULL | SERV_INST | 999 | 3996 | 9 (0)|

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | 141 | 4560 | 20 (10)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE | | 141 | 564 | 10 (10)|

| 3 | TABLE ACCESS FULL | SERVERS | 141 | 564 | 9 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 10 (10)|

| 5 | TABLE ACCESS FULL | SERV_INST | 999 | 3996 | 9 (0)|

SQL> SELECT table_name, blocks

2 FROM user_tables

3* WHERE table_name IN ('SERVERS', 'SERV_INST');

TABLE_NAME BLOCKS

------------------------------ ----------

SERVERS 28

SERV_INST 28

SQL> SELECT table_name, blocks

2 FROM user_tables

3* WHERE table_name IN ('SERVERS', 'SERV_INST');

TABLE_NAME BLOCKS

------------------------------ ----------

SERVERS 28

SERV_INST 28

Database 12gR1

more examples: www.morganslibrary.org/reference/explain_plan.html

This Adds To The Confusion

SQL> SELECT blocks

2 FROM dba_tables

3 WHERE owner = 'UWCLASS'

4 AND table_name = 'SERVERS';

BLOCKS

28

108108

SQL> SELECT blocks

2 FROM dba_segments

3 WHERE owner = 'UWCLASS'

4 AND segment_name = 'SERVERS';

BLOCKS

32

Creating Explain Plans (3:3)

� The challenge is to find the the most efficient way to access the data

� Which of these statements is best?

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

SELECT srvr_id

FROM servers

WHERE srvr_id IN (

SELECT srvr_id

FROM serv_inst);

SELECT srvr_id

FROM servers

WHERE srvr_id IN (

SELECT srvr_id

FROM serv_inst);

109109

SELECT DISTINCT s.srvr_id

FROM servers s, serv_inst i

WHERE s.srvr_id = i.srvr_id;

SELECT DISTINCT s.srvr_id

FROM servers s, serv_inst i

WHERE s.srvr_id = i.srvr_id;

SELECT srvr_id

FROM servers s

WHERE EXISTS (

SELECT srvr_id

FROM serv_inst i

WHERE s.srvr_id = i.srvr_id);

SELECT srvr_id

FROM servers s

WHERE EXISTS (

SELECT srvr_id

FROM serv_inst i

WHERE s.srvr_id = i.srvr_id);

Creating The Plan

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers s

WHERE EXISTS (

SELECT srvr_id

FROM serv_inst i

WHERE s.srvr_id = i.srvr_id);

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers s

WHERE EXISTS (

SELECT srvr_id

FROM serv_inst i

WHERE s.srvr_id = i.srvr_id);

110110

Creating The Plan Report
SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

111111

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

Reading Explain Plans (1:6)

� Read from the most indented out and from the bottom to the top

� Sum costs with similar indents in the indent group

� Use the CPU Percentage to determine the portion of the cost that is CPU

� The difference is the disk I/O cost

112112

Reading Explain Plans (2:6)

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

113113

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

1. Start with the most indented: Read 999 rows, ~13KB from the SERV_INST table's primary key index

2. Since there is no CPU percentage the cost indicates it will read 3 blocks

Reading Explain Plans (3:6)

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

114114

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

3. Sort for the query of the PK_SERV_INST index for unique values

Reading Explain Plans (4:6)

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

115115

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

4. Read one row, 13 bytes from the SERVER table's primary key index: The cost is negligible

Reading Explain Plans (5:6)

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

116116

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

5. Use a NESTED LOOP to join the results of the two index queries

6. The cost after this operation will bes 4 of which 25% is CPU (3+1=4)

Reading Explain Plans (6:6)

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

117117

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

7. The result returned to the end-user will be 11 rows (286 bytes)

A More Complex Explain Plan (1:8)

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

118118

1. Read 999 rows, about 4K of disk, which is 8 blocks

2. Sort the query result for unique values

A More Complex Explain Plan (2:8)

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

119119

3. Read 141 rows, about 0.5K of disk, which is 1 block

4. Sort the query result for unique values

A More Complex Explain Plan (3:8)

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

120120

5. Subtract the result of the IX_SERV_INST query from the result of the PK_SERVERS query

A More Complex Explain Plan (4:8)

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

121121

6. Materialize the result of the subtraction as a view

7. The cost up to now has been 4 (3+1). Now the cost is 6 of which 1/3 (2) is CPU

A More Complex Explain Plan (5:8)

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

122122

8. Perform a second full scan of the PK_SERVERS index.

9. The cost had been 6 we just added one with the unnecessary duplicate index read

A More Complex Explain Plan (6:8)

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

123123

10. Join the results in the view with the results of the index read.

11. The cost has gone from 7 to 8 of which 38%, or 3, is CPU.

A More Complex Explain Plan (7:8)

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

124124

12. Use a hashing algorithm to collect a set of unique values for the result set

13. The cost has gone from 8 to 9 of which 45%, or 4, is CPU

A More Complex Explain Plan (8:8)

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

125125

14. The result returned to the end-user will be 1 row (17 bytes)

Explain Plans: Bitmap Indexes

EXPLAIN PLAN FOR

SELECT *

FROM serv_inst

WHERE location_code = 30386

OR ws_id BETWEEN 326 AND 333;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 2 | 148 | 3 (0)| 00:00:01 |

| 1 | CONCATENATION | | | | | |

| 2 | TABLE ACCESS BY INDEX ROWID | SERV_INST | 1 | 74 | 1 (0)| 00:00:01 |

| 3 | BITMAP CONVERSION TO ROWIDS| | | | | |

|* 4 | BITMAP INDEX RANGE SCAN | BIX_SERV_INST_WS_ID | | | | |

|* 5 | TABLE ACCESS BY INDEX ROWID | SERV_INST | 1 | 74 | 1 (0)| 00:00:01 |

| 6 | BITMAP CONVERSION TO ROWIDS| | | | | |

|* 7 | BITMAP INDEX SINGLE VALUE | BIX_SERV_INST_LOCATION_CODE | | | | |

EXPLAIN PLAN FOR

SELECT *

FROM serv_inst

WHERE location_code = 30386

OR ws_id BETWEEN 326 AND 333;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 2 | 148 | 3 (0)| 00:00:01 |

| 1 | CONCATENATION | | | | | |

| 2 | TABLE ACCESS BY INDEX ROWID | SERV_INST | 1 | 74 | 1 (0)| 00:00:01 |

| 3 | BITMAP CONVERSION TO ROWIDS| | | | | |

|* 4 | BITMAP INDEX RANGE SCAN | BIX_SERV_INST_WS_ID | | | | |

|* 5 | TABLE ACCESS BY INDEX ROWID | SERV_INST | 1 | 74 | 1 (0)| 00:00:01 |

| 6 | BITMAP CONVERSION TO ROWIDS| | | | | |

|* 7 | BITMAP INDEX SINGLE VALUE | BIX_SERV_INST_LOCATION_CODE | | | | |

126126

|* 7 | BITMAP INDEX SINGLE VALUE | BIX_SERV_INST_LOCATION_CODE | | | | |

Predicate Information (identified by operation id):

4 - access("WS_ID">=326 AND "WS_ID"<=333)

5 - filter(LNNVL("WS_ID">=326) OR LNNVL("WS_ID"<=333))

7 - access("LOCATION_CODE"=30386)

|* 7 | BITMAP INDEX SINGLE VALUE | BIX_SERV_INST_LOCATION_CODE | | | | |

Predicate Information (identified by operation id):

4 - access("WS_ID">=326 AND "WS_ID"<=333)

5 - filter(LNNVL("WS_ID">=326) OR LNNVL("WS_ID"<=333))

7 - access("LOCATION_CODE"=30386)

Explain Plans: Join Syntax

explain plan for

select distinct i.srvr_id

from servers s, serv_inst i

where s.srvr_id = i.srvr_id;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 999 | 25974 | 9 (12)| 00:00:01 |

| 1 | HASH UNIQUE | | 999 | 25974 | 9 (12)| 00:00:01 |

| 2 | NESTED LOOPS | | 999 | 25974 | 8 (0)| 00:00:01 |

| 3 | TABLE ACCESS FULL| SERV_INST | 999 | 12987 | 8 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN| PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

--

explain plan for

select distinct i.srvr_id

explain plan for

select distinct i.srvr_id

from servers s, serv_inst i

where s.srvr_id = i.srvr_id;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 999 | 25974 | 9 (12)| 00:00:01 |

| 1 | HASH UNIQUE | | 999 | 25974 | 9 (12)| 00:00:01 |

| 2 | NESTED LOOPS | | 999 | 25974 | 8 (0)| 00:00:01 |

| 3 | TABLE ACCESS FULL| SERV_INST | 999 | 12987 | 8 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN| PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

--

explain plan for

select distinct i.srvr_id

127127

select distinct i.srvr_id

from servers s inner join serv_inst i

on s.srvr_id = i.srvr_id;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 999 | 25974 | 9 (12)| 00:00:01 |

| 1 | HASH UNIQUE | | 999 | 25974 | 9 (12)| 00:00:01 |

| 2 | NESTED LOOPS | | 999 | 25974 | 8 (0)| 00:00:01 |

| 3 | TABLE ACCESS FULL| SERV_INST | 999 | 12987 | 8 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN| PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

--

select distinct i.srvr_id

from servers s inner join serv_inst i

on s.srvr_id = i.srvr_id;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 999 | 25974 | 9 (12)| 00:00:01 |

| 1 | HASH UNIQUE | | 999 | 25974 | 9 (12)| 00:00:01 |

| 2 | NESTED LOOPS | | 999 | 25974 | 8 (0)| 00:00:01 |

| 3 | TABLE ACCESS FULL| SERV_INST | 999 | 12987 | 8 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN| PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

--

Explain Plans: Missing Joins Are Expensive

SQL> explain plan for

2 select s.srvr_id

3 from servers s, serv_inst i

4 where s.srvr_id = i.srvr_id;

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 999 | 25974 | 8 (0)| 00:00:01 |

| 1 | NESTED LOOPS | | 999 | 25974 | 8 (0)| 00:00:01 |

| 2 | TABLE ACCESS FULL| SERV_INST | 999 | 12987 | 8 (0)| 00:00:01 |

|* 3 | INDEX UNIQUE SCAN| PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

SQL> explain plan for

2 select s.srvr_id

SQL> explain plan for

2 select s.srvr_id

3 from servers s, serv_inst i

4 where s.srvr_id = i.srvr_id;

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 999 | 25974 | 8 (0)| 00:00:01 |

| 1 | NESTED LOOPS | | 999 | 25974 | 8 (0)| 00:00:01 |

| 2 | TABLE ACCESS FULL| SERV_INST | 999 | 12987 | 8 (0)| 00:00:01 |

|* 3 | INDEX UNIQUE SCAN| PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

SQL> explain plan for

2 select s.srvr_id

128128

2 select s.srvr_id

3 from servers s, serv_inst i;

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 140K| 1788K| 130 (1)| 00:00:02 |

| 1 | MERGE JOIN CARTESIAN | | 140K| 1788K| 130 (1)| 00:00:02 |

| 2 | INDEX FAST FULL SCAN | PK_SERVERS | 141 | 1833 | 2 (0)| 00:00:01 |

| 3 | BUFFER SORT | | 999 | | 128 (1)| 00:00:02 |

| 4 | BITMAP CONVERSION TO ROWIDS | | 999 | | 1 (0)| 00:00:01 |

| 5 | BITMAP INDEX FAST FULL SCAN| BIX_SERV_INST_WS_ID | | | | |

--

2 select s.srvr_id

3 from servers s, serv_inst i;

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 140K| 1788K| 130 (1)| 00:00:02 |

| 1 | MERGE JOIN CARTESIAN | | 140K| 1788K| 130 (1)| 00:00:02 |

| 2 | INDEX FAST FULL SCAN | PK_SERVERS | 141 | 1833 | 2 (0)| 00:00:01 |

| 3 | BUFFER SORT | | 999 | | 128 (1)| 00:00:02 |

| 4 | BITMAP CONVERSION TO ROWIDS | | 999 | | 1 (0)| 00:00:01 |

| 5 | BITMAP INDEX FAST FULL SCAN| BIX_SERV_INST_WS_ID | | | | |

--

Explain Plans: Unnecessary Joins Are Expensive

SQL> explain plan for

2 select distinct s.srvr_id

3 from servers s, serv_inst i

4 where s.srvr_id = i.srvr_id;

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 999 | 25974 | 9 (12)| 00:00:01 |

| 1 | HASH UNIQUE | | 999 | 25974 | 9 (12)| 00:00:01 |

| 2 | NESTED LOOPS | | 999 | 25974 | 8 (0)| 00:00:01 |

| 3 | TABLE ACCESS FULL| SERV_INST | 999 | 12987 | 8 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN| PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

--

explain plan for

SQL> explain plan for

2 select distinct s.srvr_id

3 from servers s, serv_inst i

4 where s.srvr_id = i.srvr_id;

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 999 | 25974 | 9 (12)| 00:00:01 |

| 1 | HASH UNIQUE | | 999 | 25974 | 9 (12)| 00:00:01 |

| 2 | NESTED LOOPS | | 999 | 25974 | 8 (0)| 00:00:01 |

| 3 | TABLE ACCESS FULL| SERV_INST | 999 | 12987 | 8 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN| PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

--

explain plan for

129129

explain plan for

select distinct s1.srvr_id

from servers s1, servers s2, serv_inst i

where s1.srvr_id = s2.srvr_id

and s1.srvr_id = i.srvr_id;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 999 | 38961 | 10 (20)| 00:00:01 |

| 1 | HASH UNIQUE | | 999 | 38961 | 10 (20)| 00:00:01 |

| 2 | NESTED LOOPS | | 999 | 38961 | 9 (12)| 00:00:01 |

| 3 | NESTED LOOPS | | 999 | 25974 | 8 (0)| 00:00:01 |

| 4 | TABLE ACCESS FULL| SERV_INST | 999 | 12987 | 8 (0)| 00:00:01 |

|* 5 | INDEX UNIQUE SCAN| PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

|* 6 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

explain plan for

select distinct s1.srvr_id

from servers s1, servers s2, serv_inst i

where s1.srvr_id = s2.srvr_id

and s1.srvr_id = i.srvr_id;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 999 | 38961 | 10 (20)| 00:00:01 |

| 1 | HASH UNIQUE | | 999 | 38961 | 10 (20)| 00:00:01 |

| 2 | NESTED LOOPS | | 999 | 38961 | 9 (12)| 00:00:01 |

| 3 | NESTED LOOPS | | 999 | 25974 | 8 (0)| 00:00:01 |

| 4 | TABLE ACCESS FULL| SERV_INST | 999 | 12987 | 8 (0)| 00:00:01 |

|* 5 | INDEX UNIQUE SCAN| PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

|* 6 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Explain Plans: Parallel Transactions (PX)

SQL> EXPLAIN PLAN FOR

2 SELECT SUM(salary)

3 FROM emp2

4 GROUP BY department_id;

Explained.

SQL> SELECT plan_table_output FROM table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

Plan hash value: 3939201228

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | TQ |IN-OUT| PQ Distrib |

---|

| 0 | SELECT STATEMENT | | 107 | 2782 | 3 (34)| 00:00:01 | | | |

| 1 | PX COORDINATOR | | | | | | | | |

| 2 | PX SEND QC (RANDOM) | :TQ10001 | 107 | 2782 | 3 (34)| 00:00:01 | Q1,01 | P->S | QC (|

| 3 | HASH GROUP BY | | 107 | 2782 | 3 (34)| 00:00:01 | Q1,01 | PCWP | |

| 4 | PX RECEIVE | | 107 | 2782 | 3 (34)| 00:00:01 | Q1,01 | PCWP | |

SQL> EXPLAIN PLAN FOR

2 SELECT SUM(salary)

3 FROM emp2

4 GROUP BY department_id;

Explained.

SQL> SELECT plan_table_output FROM table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

Plan hash value: 3939201228

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | TQ |IN-OUT| PQ Distrib |

---|

| 0 | SELECT STATEMENT | | 107 | 2782 | 3 (34)| 00:00:01 | | | |

| 1 | PX COORDINATOR | | | | | | | | |

| 2 | PX SEND QC (RANDOM) | :TQ10001 | 107 | 2782 | 3 (34)| 00:00:01 | Q1,01 | P->S | QC (|

| 3 | HASH GROUP BY | | 107 | 2782 | 3 (34)| 00:00:01 | Q1,01 | PCWP | |

| 4 | PX RECEIVE | | 107 | 2782 | 3 (34)| 00:00:01 | Q1,01 | PCWP | |

130130

| 4 | PX RECEIVE | | 107 | 2782 | 3 (34)| 00:00:01 | Q1,01 | PCWP | |

| 5 | PX SEND HASH | :TQ10000 | 107 | 2782 | 3 (34)| 00:00:01 | Q1,00 | P->P | HASH |

| 6 | HASH GROUP BY | | 107 | 2782 | 3 (34)| 00:00:01 | Q1,00 | PCWP | |

| 7 | PX BLOCK ITERATOR | | 107 | 2782 | 2 (0)| 00:00:01 | Q1,00 | PCWC | |

| 8 | TABLE ACCESS FULL| EMP2 | 107 | 2782 | 2 (0)| 00:00:01 | Q1,00 | PCWP | |

--

Note

- dynamic sampling used for this statement

| 4 | PX RECEIVE | | 107 | 2782 | 3 (34)| 00:00:01 | Q1,01 | PCWP | |

| 5 | PX SEND HASH | :TQ10000 | 107 | 2782 | 3 (34)| 00:00:01 | Q1,00 | P->P | HASH |

| 6 | HASH GROUP BY | | 107 | 2782 | 3 (34)| 00:00:01 | Q1,00 | PCWP | |

| 7 | PX BLOCK ITERATOR | | 107 | 2782 | 2 (0)| 00:00:01 | Q1,00 | PCWC | |

| 8 | TABLE ACCESS FULL| EMP2 | 107 | 2782 | 2 (0)| 00:00:01 | Q1,00 | PCWP | |

--

Note

- dynamic sampling used for this statement

Explain Plans: Pstart -Pstop: Starting & Stopping Partitions

explain plan for

select * from part_zip where state = 'CA';

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

--

| 0 | SELECT STATEMENT | | 3 | 72 | 2 (0)| 00:00:01 | | |

| 1 | PARTITION HASH SINGLE| | 3 | 72 | 2 (0)| 00:00:01 | 1 | 1 |

|* 2 | TABLE ACCESS FULL | PART_ZIP | 3 | 72 | 2 (0)| 00:00:01 | 1 | 1 |

--

explain plan for

select * from part_zip where state = 'NY';

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

--

| 0 | SELECT STATEMENT | | 3 | 72 | 2 (0)| 00:00:01 | | |

| 1 | PARTITION HASH SINGLE| | 3 | 72 | 2 (0)| 00:00:01 | 2 | 2 |

explain plan for

select * from part_zip where state = 'CA';

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

--

| 0 | SELECT STATEMENT | | 3 | 72 | 2 (0)| 00:00:01 | | |

| 1 | PARTITION HASH SINGLE| | 3 | 72 | 2 (0)| 00:00:01 | 1 | 1 |

|* 2 | TABLE ACCESS FULL | PART_ZIP | 3 | 72 | 2 (0)| 00:00:01 | 1 | 1 |

--

explain plan for

select * from part_zip where state = 'NY';

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

--

| 0 | SELECT STATEMENT | | 3 | 72 | 2 (0)| 00:00:01 | | |

| 1 | PARTITION HASH SINGLE| | 3 | 72 | 2 (0)| 00:00:01 | 2 | 2 |

131131

| 1 | PARTITION HASH SINGLE| | 3 | 72 | 2 (0)| 00:00:01 | 2 | 2 |

|* 2 | TABLE ACCESS FULL | PART_ZIP | 3 | 72 | 2 (0)| 00:00:01 | 2 | 2 |

--

explain plan for

select * from part_zip where zipcode LIKE '%5%';

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

--

| 0 | SELECT STATEMENT | | 2 | 48 | 2 (0)| 00:00:01 | | |

| 1 | PARTITION HASH ALL | | 2 | 48 | 2 (0)| 00:00:01 | 1 | 3 |

|* 2 | TABLE ACCESS FULL | PART_ZIP | 2 | 48 | 2 (0)| 00:00:01 | 1 | 3 |

--

| 1 | PARTITION HASH SINGLE| | 3 | 72 | 2 (0)| 00:00:01 | 2 | 2 |

|* 2 | TABLE ACCESS FULL | PART_ZIP | 3 | 72 | 2 (0)| 00:00:01 | 2 | 2 |

--

explain plan for

select * from part_zip where zipcode LIKE '%5%';

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

--

| 0 | SELECT STATEMENT | | 2 | 48 | 2 (0)| 00:00:01 | | |

| 1 | PARTITION HASH ALL | | 2 | 48 | 2 (0)| 00:00:01 | 1 | 3 |

|* 2 | TABLE ACCESS FULL | PART_ZIP | 2 | 48 | 2 (0)| 00:00:01 | 1 | 3 |

--

Explain Plans: Temp Tablespace Usage (ORDER BY clause)

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

Plan hash value: 995087943

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 98128 | 12M| | 3435 (1)| 00:00:42 |

| 1 | SORT ORDER BY | | 98128 | 12M| 25M| 3435 (1)| 00:00:42 |

| 2 | TABLE ACCESS FULL| SOURCE$ | 98128 | 12M| | (2)| 00:00:07 |

--

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

Plan hash value: 995087943

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 98128 | 12M| | 3435 (1)| 00:00:42 |

| 1 | SORT ORDER BY | | 98128 | 12M| 25M| 3435 (1)| 00:00:42 |

| 2 | TABLE ACCESS FULL| SOURCE$ | 98128 | 12M| | (2)| 00:00:07 |

--

132132

Explain Plan Errors (1:8)

� Oracle can do math

� But not always as well as you can

� Consider the following SQL statement

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

133133

Explain Plan Errors (2:8)

� Why is this wrong?

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

134134

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

Explain Plan Errors (3:8)

� Why is this wrong?

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

135135

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

1. Read 999 rows, ~4K from the SERV_INST table's index IX_SERV_INST: The cost is 3

Explain Plan Errors (4:8)

� Why is this wrong?

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

136136

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

2. Sort the IX_SERV_INST index entries

3. The additional cost is 1 (3+1=4) and 25% of the cost of 4 is CPU (4 x 0.25 = 1): The math works

Explain Plan Errors (5:8)

� Why is this wrong?

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

137137

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

4. Read 141 rows, 0.5K, from the primary key of the SERVERS table: The cost is 1

5. This line is indented so it is not added, directly, to the cost of operations 4 and 5

Explain Plan Errors (6:8)

� Why is this wrong?

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

138138

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

6. A SORT UNIQUE NOSORT is used to remove potential duplicate rows

7. The additional cost is 1 (1+1=2) and 50% of the cost of 2 is CPU (2 x 0.50 = 1): The math works again

Explain Plan Errors (7:8)

� Why is this wrong?

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

139139

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

8. Perform an intersection of the two result sets

Explain Plan Errors (8:8)

� Why is this wrong?

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

140140

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

9. Add the two costs (2+4=6): The math works

10. 25% of the 4 is CPU (1) and 50% of the 2 is CPU (1) and (1+1=2). Is 2/6 equal to 84%?

Explain Planning a Statement After It Has Been Run

� Use the DISPLAY_CURSOR pipelined table function

141141

Explain Planning a Statement After It Has Been Run

SELECT /* XPLAN_CURSOR */ DISTINCT s.srvr_id

FROM servers s, serv_inst I

WHERE s.srvr_id = i.srvr_id;

SELECT sql_id

FROM gv$sql

WHERE sql_text LIKE '%XPLAN_CURSOR%';

SELECT * FROM

SELECT /* XPLAN_CURSOR */ DISTINCT s.srvr_id

FROM servers s, serv_inst I

WHERE s.srvr_id = i.srvr_id;

SELECT sql_id

FROM gv$sql

WHERE sql_text LIKE '%XPLAN_CURSOR%';

SELECT * FROM

� Use the DISPLAY_CURSOR pipelined table function

142142

TABLE(dbms_xplan.display_cursor('cpm9ss48qd32f'));TABLE(dbms_xplan.display_cursor('cpm9ss48qd32f'));

Explain Planning a Statement After It Has Been Run

First get the SQL_ID of the statement

SQL> SELECT DISTINCT sql_id

2 FROM v$sqlarea

3 WHERE executions = (SELECT

MAX(executions) FROM v$sqlarea);

SQL_ID

5sg7mjrpj21z7

fnq8p3fj3r5as

SQL> SELECT DISTINCT sql_id

2 FROM v$sqlarea

3 WHERE executions = (SELECT

MAX(executions) FROM v$sqlarea);

SQL_ID

5sg7mjrpj21z7

fnq8p3fj3r5as

143143

Explain Planning a Statement After Execution
SQL> SELECT * FROM TABLE(dbms_xplan.display_cursor('5sg7mjrpj21z7'));

PLAN_TABLE_OUTPUT

--

SQL_ID 5sg7mjrpj21z7, child number 0

SELECT JOB,LAST_DATE,THIS_DATE,NEXT_DATE,FIELD1 FROM SYS."JOB$_REDUCED"

"JOB$_REDUCED" WHERE "JOB$_REDUCED"."THIS_DATE" IS NULL AND

("JOB$_REDUCED"."LAST_DATE" IS NULL AND "JOB$_REDUCED"."NEXT_DATE"<:1

OR "JOB$_REDUCED"."NEXT_DATE">=:2 AND "JOB$_REDUCED"."NEXT_DATE"<=:3)

AND ("JOB$_REDUCED"."FIELD1"=:4 OR "JOB$_REDUCED"."FIELD1"=0 AND

'Y'=:5) AND ("JOB$_REDUCED"."JOB"<1000000000 AND

"SYS"."DBMS_LOGSTDBY"."DB_IS_LOGSTDBY"()=0 OR "JOB$_REDUCED"."JOB">=1000000000 AND

"SYS"."DBMS_LOGSTDBY"."DB_IS_LOGSTDBY"()=1)

SQL> SELECT * FROM TABLE(dbms_xplan.display_cursor('5sg7mjrpj21z7'));

PLAN_TABLE_OUTPUT

--

SQL_ID 5sg7mjrpj21z7, child number 0

SELECT JOB,LAST_DATE,THIS_DATE,NEXT_DATE,FIELD1 FROM SYS."JOB$_REDUCED"

"JOB$_REDUCED" WHERE "JOB$_REDUCED"."THIS_DATE" IS NULL AND

("JOB$_REDUCED"."LAST_DATE" IS NULL AND "JOB$_REDUCED"."NEXT_DATE"<:1

OR "JOB$_REDUCED"."NEXT_DATE">=:2 AND "JOB$_REDUCED"."NEXT_DATE"<=:3)

AND ("JOB$_REDUCED"."FIELD1"=:4 OR "JOB$_REDUCED"."FIELD1"=0 AND

'Y'=:5) AND ("JOB$_REDUCED"."JOB"<1000000000 AND

"SYS"."DBMS_LOGSTDBY"."DB_IS_LOGSTDBY"()=0 OR "JOB$_REDUCED"."JOB">=1000000000 AND

"SYS"."DBMS_LOGSTDBY"."DB_IS_LOGSTDBY"()=1)

144144

"SYS"."DBMS_LOGSTDBY"."DB_IS_LOGSTDBY"()=1)

Plan hash value: 3312758264

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | | | 1 (100)|

| 1 | CONCATENATION | | | | |

|* 2 | TABLE ACCESS BY INDEX ROWID BATCHED| JOB$ | 1 | 53 | 0 (0)|

|* 3 | INDEX RANGE SCAN | I_JOB_NEXT | 1 | | 0 (0)|

|* 4 | TABLE ACCESS BY INDEX ROWID BATCHED| JOB$ | 1 | 53 | 0 (0)|

|* 5 | INDEX RANGE SCAN | I_JOB_NEXT | 1 | | 0 (0)|

--

"SYS"."DBMS_LOGSTDBY"."DB_IS_LOGSTDBY"()=1)

Plan hash value: 3312758264

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | | | 1 (100)|

| 1 | CONCATENATION | | | | |

|* 2 | TABLE ACCESS BY INDEX ROWID BATCHED| JOB$ | 1 | 53 | 0 (0)|

|* 3 | INDEX RANGE SCAN | I_JOB_NEXT | 1 | | 0 (0)|

|* 4 | TABLE ACCESS BY INDEX ROWID BATCHED| JOB$ | 1 | 53 | 0 (0)|

|* 5 | INDEX RANGE SCAN | I_JOB_NEXT | 1 | | 0 (0)|

--

Related Dynamic Performance View

� The following dynamic performance views give information vital to
understanding how SQL is running in the real-world environment
� V$SQL

� V$SQLAREA

� V$SQLSTATS

� V$SQL_BIND_CAPTURE

� V$SQL_BIND_DATA

� V$SQL_BIND_METADATA

145145

� V$SQL_PLAN

One Way To Look At Performance
SQL> EXPLAIN PLAN FOR

2 SELECT COUNT(*)

3 FROM parent p, child c

4 WHERE p.parent_id = c.parent_id;

SQL> select * From table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

Plan hash value: 3584092213

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 10 | | 3163 (5)| 00:00:38 |

| 1 | SORT AGGREGATE | | 1 | 10 | | | |

|* 2 | HASH JOIN | | 1500K| 14M| 8312K| 3163 (5)| 00:00:38 |

| 3 | TABLE ACCESS FULL| PARENT | 500K| 2442K| | 380 (4)| 00:00:05 |

| 4 | TABLE ACCESS FULL| CHILD | 1500K| 7324K| | 1106 (5)| 00:00:14 |

--

SQL> explain plan for

SQL> EXPLAIN PLAN FOR

2 SELECT COUNT(*)

3 FROM parent p, child c

4 WHERE p.parent_id = c.parent_id;

SQL> select * From table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

Plan hash value: 3584092213

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 10 | | 3163 (5)| 00:00:38 |

| 1 | SORT AGGREGATE | | 1 | 10 | | | |

|* 2 | HASH JOIN | | 1500K| 14M| 8312K| 3163 (5)| 00:00:38 |

| 3 | TABLE ACCESS FULL| PARENT | 500K| 2442K| | 380 (4)| 00:00:05 |

| 4 | TABLE ACCESS FULL| CHILD | 1500K| 7324K| | 1106 (5)| 00:00:14 |

--

SQL> explain plan for

146146

SQL> explain plan for

2 SELECT COUNT(*)

3 FROM parent p, child c

4 WHERE p.parent_id = c.parent_id

5 AND c.birth_date is NOT NULL;

SQL> select * From table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

Plan hash value: 3584092213

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 16 | | 3037 (5)| 00:00:37 |

| 1 | SORT AGGREGATE | | 1 | 16 | | | |

|* 2 | HASH JOIN | | 999K| 15M| 8312K| 3037 (5)| 00:00:37 |

| 3 | TABLE ACCESS FULL| PARENT | 500K| 2442K| | 380 (4)| 00:00:05 |

|* 4 | TABLE ACCESS FULL| CHILD | 999K| 10M| | 1116 (6)| 00:00:14 |

--

SQL> explain plan for

2 SELECT COUNT(*)

3 FROM parent p, child c

4 WHERE p.parent_id = c.parent_id

5 AND c.birth_date is NOT NULL;

SQL> select * From table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

Plan hash value: 3584092213

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 16 | | 3037 (5)| 00:00:37 |

| 1 | SORT AGGREGATE | | 1 | 16 | | | |

|* 2 | HASH JOIN | | 999K| 15M| 8312K| 3037 (5)| 00:00:37 |

| 3 | TABLE ACCESS FULL| PARENT | 500K| 2442K| | 380 (4)| 00:00:05 |

|* 4 | TABLE ACCESS FULL| CHILD | 999K| 10M| | 1116 (6)| 00:00:14 |

--

Another Way To Look At Performance

SQL> set timing on

SQL> SELECT COUNT(*)

2 FROM parent p, child c

3 WHERE p.parent_id = c.parent_id;

COUNT(*)

1500000

Elapsed: 00:00:00.59

SQL> set timing on

SQL> SELECT COUNT(*)

2 FROM parent p, child c

3 WHERE p.parent_id = c.parent_id;

COUNT(*)

1500000

Elapsed: 00:00:00.59

147147

SQL> SELECT COUNT(*)

2 FROM parent p, child c

3 WHERE p.parent_id = c.parent_id

4 AND birth_date is NOT NULL;

COUNT(*)

1000000

Elapsed: 00:00:00.53

SQL> SELECT COUNT(*)

2 FROM parent p, child c

3 WHERE p.parent_id = c.parent_id

4 AND birth_date is NOT NULL;

COUNT(*)

1000000

Elapsed: 00:00:00.53

Adaptive Execution Plans (1:2)

� New to Database version 12c is Adaptive Execution Plans and a newly
tracked feature is use of "adaptive execution plans"

� An adaptive plan is one that learns about the data as it is executed
DECLARE

i NUMBER;

j NUMBER;

k CLOB;

BEGIN

dbms_feature_adaptive_plans(i, j, k);

dbms_output.put_line('1: ' || i);

dbms_output.put_line('2: ' || j);

DECLARE

i NUMBER;

j NUMBER;

k CLOB;

BEGIN

dbms_feature_adaptive_plans(i, j, k);

dbms_output.put_line('1: ' || i);

dbms_output.put_line('2: ' || j);

148148

dbms_output.put_line('2: ' || j);

dbms_output.put_line('3: ' || k);

END;

/

1: 1

2:

3: Total number of queries: 501

Number of queries with an adaptive plan: 35

Percentage of queries with an adaptive plan:

6.98602794411177644710578842315369261477

Are the queries running in reporting mode ? : No

dbms_output.put_line('2: ' || j);

dbms_output.put_line('3: ' || k);

END;

/

1: 1

2:

3: Total number of queries: 501

Number of queries with an adaptive plan: 35

Percentage of queries with an adaptive plan:

6.98602794411177644710578842315369261477

Are the queries running in reporting mode ? : No

Adaptive Execution Plans (2:2)

� An option available to the DBMS_XPLAN built-in package is through the use
of the format constant ADAPTIVE which
� Displays the final plan, or the current plan if the execution has not completed

� This section includes notes about runtime optimizations that affect the plan, such as switching
from a Nested Loops join to a Hash join

� Plan lineage

� This section shows the plans that were run previously due to automatic reoptimization

� It also shows the default plan, if the plan changed due to dynamic plans

� Recommended plan

149149

� Recommended plan

� In reporting mode, the plan is chosen based on execution statistics displayed

� Note that displaying the recommended plan for automatic reoptimization requires re-compiling
the query with the optimizer adjustments collected in the child cursor

� Displaying the recommended plan for a dynamic plan does not require this

� Dynamic plans

� This summarizes the portions of the plan that differ from the default plan chosen by the optimizer

This Makes It Even Worse
SQL> DECLARE

2 uf NUMBER;

3 ub NUMBER;

4 f1 NUMBER;

5 f1b NUMBER;

6 f2 NUMBER;

7 f2b NUMBER;

8 f3 NUMBER;

9 f3b NUMBER;

10 f4 NUMBER;

11 f4b NUMBER;

12 fbl NUMBER;

13 fby NUMBER;

14 BEGIN

15 dbms_space.space_usage('UWCLASS','SERVERS', 'TABLE', uf, ub, f1, f1b, f2, f2b, f3, f3b, f4, f4b, fbl, fby);

16

17 dbms_output.put_line('unformatted blocks: ' || TO_CHAR(uf));

18 dbms_output.put_line('unformatted bytes: ' || TO_CHAR(ub));

19 dbms_output.put_line('blocks 0-25% free: ' || TO_CHAR(f1));

20 dbms_output.put_line('bytes 0-25% free: ' || TO_CHAR(f1b));

21 dbms_output.put_line('blocks 25-50% free: ' || TO_CHAR(f2));

22 dbms_output.put_line('bytes 25-50% free: ' || TO_CHAR(f2b));

23 dbms_output.put_line('blocks 50-75% free: ' || TO_CHAR(f3));

24 dbms_output.put_line('bytes 50-75% free: ' || TO_CHAR(f3b));

150150

24 dbms_output.put_line('bytes 50-75% free: ' || TO_CHAR(f3b));

25 dbms_output.put_line('blocks 75-100% free: ' || TO_CHAR(f4));

26 dbms_output.put_line('bytes 75-100% free: ' || TO_CHAR(f4b));

27 dbms_output.put_line('full blocks: ' || TO_CHAR(fbl));

28 dbms_output.put_line('full bytes: ' || TO_CHAR(fby));

29 END;

30 /

unformatted blocks: 16

unformatted bytes: 131072

blocks 0-25% free: 0

bytes 0-25% free: 0

blocks 25-50% free: 1

bytes 25-50% free: 8192

blocks 50-75% free: 0

bytes 50-75% free: 0

blocks 75-100% free: 11

bytes 75-100% free: 90112

full blocks: 0

full bytes: 0

only 12 blocks are formattedonly 12 blocks are formatted

more examples: www.morganslibrary.org/reference/pkgs/dbms_space.html

AWR Difference Reports (1:5)

� SQL scripts located at $ORACLE_HOME/rdbms/admin

File Name Strategy

awrddrpi.sql Report on differences between differences between values recorded in two pairs of snapshots. This
script requests the user for the dbid and instance number of the instance to report on, for each snapshot
pair, before producing the standard report.

awrddrpt.sql Defaults the dbid and instance number to that of the current instance connected-to, then calls
awrddrpi.sql to produce the Compare Periods report.

awrextr.sql SQL/Plus script to help users extract data from the AWR.

awrgdrpi.sql RAC Version of Compare Period Report.

awrgdrpt.sql This script defaults the dbid to that of the current instance connected-to, defaults instance list to all
available instances and then calls awrgdrpi.sql to produce the Workload Repository RAC Compare

151151

available instances and then calls awrgdrpi.sql to produce the Workload Repository RAC Compare
Periods report.

awrgrpt.sql This script defaults the dbid to that of the current instance connected-to, then calls awrgrpti.sql to
produce the Workload Repository RAC report.

awrgrti.sql SQL*Plus command file to report on RAC-wide differences between values recorded in two snapshots.
This script requests the user for the dbid before producing the standard Workload Repository report.

more examples: www.morganslibrary.org/reference/awr_report.html

AWR Difference Reports (2:5)

� SQL scripts located at $ORACLE_HOME/rdbms/admin

File Name Strategy

awrinfo.sql Outputs general AWR information such as the size, data distribution, etc. in AWR and SYSAUX. The
intended use of this script is for diagnosing abnormalities in AWR and not for diagnosing issues in the
database instance.

awrrpt.sql Defaults the dbid and instance number to that of the current instance connected-to, then calls awrrpti.sql
to produce the report.

awrrpti.sql SQL*Plus command file to report on differences between values recorded in two snapshots. This script
requests the user for the dbid and instance number of the instance to report on, before producing the
standard report.

awrsqrpi.sql SQL*Plus command file to report on differences between values recorded in two snapshots. This script
requests the user for the dbid, instance number and the sql id, before producing a report for a particular

152152

more examples: www.morganslibrary.org/reference/awr_report.html

requests the user for the dbid, instance number and the sql id, before producing a report for a particular
sql statement in this instance.

awrsqrpt.sql Defaults the dbid and instance number to that of the current instance connected-to then calls
awrsqrpi.sql to produce a Workload report for a particular sql statement.

awrupd12.sql This script updates AWR data to version 12c. It only modifies AWR data that has been imported using
awrload.sql, or data from before changing the database DBID. In other words, it doesn't modify AWR
data for the local, active DBID.

AWR Difference Reports (3:5)

153153

more examples: www.morganslibrary.org/reference/awr_report.html

AWR Difference Reports (4:5)

154154

more examples: www.morganslibrary.org/reference/awr_report.html

AWR Difference Reports (5:5)

155155

more examples: www.morganslibrary.org/reference/awr_report.html

DBMS_ADDM

� COMPARE_DATABASES new in Database 12c

� Create a report comparing the performance of a database over two different time periods

or the performance of two different databases over two different time periods

� COMPARE_INSTANCES new in Database 12c

� Create a report comparing the performance of a single instance over two different

time periods or the performance of two different instances over two different time periods
dbms_addm.compar_databases(

base_dbid IN NUMBER,
dbms_addm.compare_instances(

base_dbid IN NUMBER,

156156

base_dbid IN NUMBER,

base_begin_snap_id IN NUMBER,

base_end_snap_id IN NUMBER,

comp_dbid IN NUMBER,

comp_begin_snap_id IN NUMBER,

comp_end_snap_id IN NUMBER,

report_type IN VARCHAR2 := 'HTML')

RETURN CLOB

base_dbid IN NUMBER,

base_instance_id IN NUMBER,

base_begin_snap_id IN NUMBER,

base_end_snap_id IN NUMBER,

comp_dbid IN NUMBER,

comp_instance_id IN NUMBER,

comp_begin_snap_id IN NUMBER,

comp_end_snap_id IN NUMBER,

report_type IN VARCHAR2 := 'HTML')

RETURN CLOB;

157

Application Design

Too Many Columns (1:2)

� Oracle claims that a table can contain up to 1,000 columns: It is not true. No
database can do 1,000 columns no matter what their marketing claims may be

� The maximum number of real table columns is 255

� Break the 255 barrier and optimizations such as advanced and hybrid
columnar compression no longer work

� A 1,000 column table is actually four segments joined together seamlessly
behind the scenes just as a partitioned table appears to be a single segment
but isn't

158158

but isn't

� Be suspicious of any table with more than 50 columns. At 100 columns it is
time to take a break and re-read the Codd-Date rules on normalization

� Think vertically not horizontally

Too Many Columns (2:2)

� Be very suspicious of any table with column names in the form "SPARE1",
"SPARE2", "..."

� The more columns a table has the more cpu is required when accessing
columns to the right (as the table is displayed in a SELECT * query ... or at the bottom if the table is
displayed by a DESCribe)

159159

Column Ordering (1:2)

� Computers are not humans and tables are not paper forms

� CBO's column retrieval cost
� Oracle stores columns in variable length format

� Each row is parsed in order to retrieve one or more columns

� Each subsequently parsed column introduces a cost of 20 cpu cycles regardless of
whether it is of value or not

� These tables will be accessed by person_id or state: No one will ever put the address2
column into the WHERE clause as a filter ... they won't filter on middle initial either

160160

CREATE TABLE customers (

person_id NUMBER,

first_name VARCHAR2(30) NOT NULL,

middle_init VARCHAR2(2),

last_name VARCHAR2(30) NOT NULL,

address1 VARCHAR2(30),

address2 VARCHAR2(30),

city VARCHAR2(30),

state VARCHAR2(2));

Common Design

CREATE TABLE customers (

person_id NUMBER,

last_name VARCHAR2(30) NOT NULL,

state VARCHAR2(2) NOT NULL,

city VARCHAR2(30) NOT NULL,

first_name VARCHAR2(30) NOT NULL,

address1 VARCHAR2(30),

address2 VARCHAR2(30),

middle_init VARCHAR2(2));

Optimized Design

Column Ordering (2:2)

� Proof column order matters
CREATE TABLE read_test AS

SELECT *

FROM apex_040200.wwv_flow_page_plugs

WHERE rownum = 1;

SQL> explain plan for

2 select * from read_test;

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 214K| 2 (0)| 00:00:01 |

| 1 | TABLE ACCESS FULL| READ_TEST | 1 | 214K| 2 (0)| 00:00:01 |

161161

| 1 | TABLE ACCESS FULL| READ_TEST | 1 | 214K| 2 (0)| 00:00:01 |

-- fetch value from column 1

Final cost for query block SEL$1 (#0) - All Rows Plan:

Best join order: 1

Cost: 2.0002 Degree: 1 Card: 1.0000 Bytes: 13

Resc: 2.0002 Resc_io: 2.0000 Resc_cpu: 7271

Resp: 2.0002 Resp_io: 2.0000 Resc_cpu: 7271

-- fetch value from column 193

Final cost for query block SEL$1 (#0) - All Rows Plan:

Best join order: 1

Cost: 2.0003 Degree: 1 Card: 1.0000 Bytes: 2002

Resc: 2.0003 Resc_io: 2.0000 Resc_cpu: 11111

Resp: 2.0003 Resp_io: 2.0000 Resc_cpu: 11111

162

More Object Optimizations

Index Mythology

� Full Table Scans are bad
� The above statement is pure unadulterated nonsense: Easily proven false and yet it

persists year-after-year

� Queries should use an index

� There is a magic number, like 10% or rows, over which an index won't be used

� All indexes are of equal value

� Indexes need to be rebuilt regularly
� Rebuilds are DDL and require substantial resources and locking

163163

� Rebuilds are DDL and require substantial resources and locking

� Indexes almost never need to be rebuilt

� Coalesced perhaps but not rebuilt

Myth Busted

SQL> explain plan for

2 SELECT doc_name

3 FROM t

4 WHERE person_id = 221;

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 216 | 6264 | 64 (4)| 00:00:01 |

|* 1 | TABLE ACCESS FULL| T | 216 | 6264 | 64 (4)| 00:00:01 |

--

SQL> explain plan for

2 SELECT doc_name

3 FROM t

4 WHERE person_id = 221;

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 216 | 6264 | 64 (4)| 00:00:01 |

|* 1 | TABLE ACCESS FULL| T | 216 | 6264 | 64 (4)| 00:00:01 |

--

164164

SQL> explain plan for

2 SELECT /*+ INDEX(t ix_t_person_id) */ doc_name

3 FROM t

4 WHERE person_id = 221;

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 216 | 6264 | 216 (0)| 00:00:03 |

| 1 | TABLE ACCESS BY INDEX ROWID| T | 216 | 6264 | 216 (0)| 00:00:03 |

|* 2 | INDEX RANGE SCAN | IX_T_PERSON_ID | 216 | | 1 (0)| 00:00:01 |

--

SQL> explain plan for

2 SELECT /*+ INDEX(t ix_t_person_id) */ doc_name

3 FROM t

4 WHERE person_id = 221;

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 216 | 6264 | 216 (0)| 00:00:03 |

| 1 | TABLE ACCESS BY INDEX ROWID| T | 216 | 6264 | 216 (0)| 00:00:03 |

|* 2 | INDEX RANGE SCAN | IX_T_PERSON_ID | 216 | | 1 (0)| 00:00:01 |

--

Oracle Index Types

� Unlike SQL Server, and other products, Oracle has many types of indexes so
your choice of index type can be optimized for the application's needs
� B*Tree

� Bitmap

� Bitmap Join

� Compressed

� Descending

� Function Based

165165

� Hash

� IndexType

� Invisible

� Reverse

� XML

B*Tree Indexes (1:2)

� Balance Tree

� Upside down Tree-like structure where each branch represents a different set
of data

� Contains branch blocks and leaf blocks

� Leaf blocks contain index values and the ROWID that points to the physical
location of a row with that value

� The default index type in Oracle

� The only index type in most RDBMSs

166166

� The only index type in most RDBMSs

SQL> CREATE INDEX ix_postal_codes

2 ON postal_codes(state, city)

3 TABLESPACE uwdata;

SQL> CREATE INDEX ix_postal_codes

2 ON postal_codes(state, city)

3 TABLESPACE uwdata;

Concatenated Indexes

� With concatenated indexes, the leading column should be the most selective

� If the leading column is the most selective and the most frequently used in the
limiting conditions

� Then the second and subsequent columns of the index will have the most
effect if they are the next most selective and the next most frequently queried

� This will have the biggest impact on the biggest number of queries, assuming
that the same column is used most frequently in the limiting conditions of
queries

167167

queries

� It also makes possible BASIC Index compression

Concatenated Indexes vs. Multiple Single Column Indexes

� If the other columns are frequently referenced with the leading column, there
will be significant performance advantages by creating a concatenated index
instead of separate indexes

� Less I/O will be required

� The results from the separate index reads won't need to be merged, resulting
in less filtering

168168

Bitmap and Bitmap Join Indexes

� Use with low cardinality (a small number of distinct values) and essentially no
updates or deletes

� The word possible example of low cardinality for a bitmap index is a gender
column with the values "F" and "M": Why?

� When you modify one byte in one row of a table with a bitmap index on the
changed column how much redo is written? This is critically important to know

� If it isn't a traditional Data Warehouse do not use a Bitmap Index

� If you update a single byte in a B*Tree index how much redo is generated?

169169

� If you update a single byte in a B*Tree index how much redo is generated?

Descending Indexes

� Optimal when an index read is associated with an ORDER BY DESCENDING
clause

SQL> CREATE TABLE orders(

2 order_id NUMBER(9,0),

3 ship_date DATE;

SQL> CREATE INDEX ix_orders_reg

2 ON orders(cust_id, ship_date);

SQL> CREATE INDEX ix_orders_desc

2 ON orders(cust_id, ship_date DESC);

SQL> EXPLAIN PLAN FOR

SQL> CREATE TABLE orders(

2 order_id NUMBER(9,0),

3 ship_date DATE;

SQL> CREATE INDEX ix_orders_reg

2 ON orders(cust_id, ship_date);

SQL> CREATE INDEX ix_orders_desc

2 ON orders(cust_id, ship_date DESC);

SQL> EXPLAIN PLAN FOR

170170

2 SELECT order_id

3 FROM orders

4 WHERE ship_date IS NOT NULL

5 ORDER BY ship_date DESC;

--

| Id | Operation | Name |

--

| 0 | SELECT STATEMENT | |

| 1 | SORT ORDER BY | |

|* 2 | INDEX FAST FULL SCAN| IX_ORDERS_DESC |

--

2 SELECT order_id

3 FROM orders

4 WHERE ship_date IS NOT NULL

5 ORDER BY ship_date DESC;

--

| Id | Operation | Name |

--

| 0 | SELECT STATEMENT | |

| 1 | SORT ORDER BY | |

|* 2 | INDEX FAST FULL SCAN| IX_ORDERS_DESC |

--

Function Based Indexes (1 of 2)

� Index the result of a function applied to a column or multiple columns within
the row

� Can be used to enhance performance by not indexing that which is of no
value to index ... for example a column with 10% "Y" and 90% "No" values

� Without a Function Based Index
a full table scan would be
required as well as a calculation
of every row

conn scott/tiger@pdborcl

SQL> desc emp

Name Null? Type

----------------- -------- ------------

EMPNO NOT NULL NUMBER(4)

conn scott/tiger@pdborcl

SQL> desc emp

Name Null? Type

----------------- -------- ------------

EMPNO NOT NULL NUMBER(4)

171171

EMPNO NOT NULL NUMBER(4)

ENAME VARCHAR2(10)

JOB VARCHAR2(9)

MGR NUMBER(4)

HIREDATE DATE

SAL NUMBER(7,2)

COMM NUMBER(7,2)

DEPTNO NUMBER(2)

CREATE INDEX fbi_emp_sal_x_comm

ON emp(sal + comm);

SELECT ename

FROM emp

WHERE (sal + comm) < 300000;

EMPNO NOT NULL NUMBER(4)

ENAME VARCHAR2(10)

JOB VARCHAR2(9)

MGR NUMBER(4)

HIREDATE DATE

SAL NUMBER(7,2)

COMM NUMBER(7,2)

DEPTNO NUMBER(2)

CREATE INDEX fbi_emp_sal_x_comm

ON emp(sal + comm);

SELECT ename

FROM emp

WHERE (sal + comm) < 300000;

Function Based Indexes (2 of 2)

� A regular index would index 99% "N" values wasting substantial space and the
index will never be used to find the value "N"

� As a normal B*Tree index IX_FBIDEMO will have what leaf block distribution?
SQL> CREATE TABLE fbidemo AS

2 SELECT object_name, object_type, temporary

3 FROM dba_objects;

SQL> CREATE INDEX ix_fbidemo

2 ON fbidemo (temporary);

SQL> CREATE INDEX fbi_fbidemo

2 ON fbidemo (DECODE(temporary, 'Y', 'Y', NULL));

SQL> CREATE TABLE fbidemo AS

2 SELECT object_name, object_type, temporary

3 FROM dba_objects;

SQL> CREATE INDEX ix_fbidemo

2 ON fbidemo (temporary);

SQL> CREATE INDEX fbi_fbidemo

2 ON fbidemo (DECODE(temporary, 'Y', 'Y', NULL));

172172

Invisible Indexes

� Invisible indexes are real indexes and are maintained as like any other index
but, by default, are not visible to the optimizer

� Excellent for use when inappropriate use of an index might slow down the
system but a small number of sessions will benefit from it

CREATE INDEX ix_invis

ON invis(table_name)

INVISIBLE;

ALTER SESSION SET optimizer_use_invisible_indexes = TRUE;

CREATE INDEX ix_invis

ON invis(table_name)

INVISIBLE;

ALTER SESSION SET optimizer_use_invisible_indexes = TRUE;

173173

Sorted Hash Clusters

� Sorted hash clusters, applied appropriately, can eliminate substantial
overhead created by an ORDER BY clause

CREATE CLUSTER sorted_hc (

program_id NUMBER(3),

line_id NUMBER(10) SORT,

delivery_dt DATE SORT)

TABLESPACE uwdata

HASHKEYS 9

SIZE 750

HASH IS program_id;

CREATE CLUSTER sorted_hc (

program_id NUMBER(3),

line_id NUMBER(10) SORT,

delivery_dt DATE SORT)

TABLESPACE uwdata

HASHKEYS 9

SIZE 750

HASH IS program_id;

174174

CREATE TABLE shc_airplane (

program_id NUMBER(3),

line_id NUMBER(10) SORT,

delivery_dt DATE SORT,

customer_id VARCHAR2(3),

order_dt DATE)

CLUSTER sorted_hc (program_id, line_id, delivery_dt);

CREATE TABLE shc_airplane (

program_id NUMBER(3),

line_id NUMBER(10) SORT,

delivery_dt DATE SORT,

customer_id VARCHAR2(3),

order_dt DATE)

CLUSTER sorted_hc (program_id, line_id, delivery_dt);

Demo

Chained Rows

� A chained row is a row that is written to two or more blocks

� Row chaining inevitably leads to more I/O than would be required if the entire
row fit within a single block

SQL> @?/rdbms/admin/utlchn1.sql

SQL> ANALYZE TABLE t LIST CHAINED ROWS INTO chained_rows;

SQL> SELECT sys_op_rpb(rowid), table_name, head_rowid, analyze_timestamp

2 FROM chained_rows;

SQL> SELECT rowid, dbms_rowid.rowid_block_number(rowid) BN, sys_op_rpb(rowid), length(col1), length(col2)

2 FROM t;

SQL> @?/rdbms/admin/utlchn1.sql

SQL> ANALYZE TABLE t LIST CHAINED ROWS INTO chained_rows;

SQL> SELECT sys_op_rpb(rowid), table_name, head_rowid, analyze_timestamp

2 FROM chained_rows;

SQL> SELECT rowid, dbms_rowid.rowid_block_number(rowid) BN, sys_op_rpb(rowid), length(col1), length(col2)

2 FROM t;

175175

2 FROM t;2 FROM t;

Index Use and Abuse

� What is the right number of indexes on a table?

� It depends but a number between 0 and 6 is reasonable

� One way to determine if an index is being used is to monitor usage ... but it
can be misleading because while the index may not be read ... the stats on it
may be of great value to the optimizer in choosing the correct execution path
� If an index that is not used is dropped it may affect execution plans

� If an index that is not used is altered it may affect execution plans

� If an index that is not used is created it may affect execution plans

176176

� If an index that is not used is created it may affect execution plans

SQL> ALTER INDEX ix_index_demo_gender_state MONITORING USAGE;

SQL> SELECT *

2 FROM v$object_usage;

SQL> ALTER INDEX ix_index_demo_gender_state MONITORING USAGE;

SQL> SELECT *

2 FROM v$object_usage;

Sequence Caching

� If you see something like this invest some time in sequence tuning

� Cache Size specifies how many values of the sequence the database
preallocates and keeps in memory for faster access

� In the event of a system failure all unused cached sequence values are lost

� There is substantial overhead, and locking each time the sequence pre-
allocates a new set of values

� Oracle's default cache value of 20 is a
bad joke and should never be used for

SQL> SELECT order_flag, cache_size, COUNT(*)

2 FROM dba_sequences

3 WHERE sequence_owner NOT LIKE '%SYS%'

SQL> SELECT order_flag, cache_size, COUNT(*)

2 FROM dba_sequences

3 WHERE sequence_owner NOT LIKE '%SYS%'

177177

bad joke and should never be used for
anything other than demos of what is
wrong with a value of 20

3 WHERE sequence_owner NOT LIKE '%SYS%'

4 GROUP BY order_flag, cache_size

5* ORDER BY order_flag, cache_size;

O CACHE_SIZE COUNT(*)

- ---------- ----------

N 0 7

N 9 4

N 10 4

N 20 52

Y 0 52

Y 20 8

Y 100 1

3 WHERE sequence_owner NOT LIKE '%SYS%'

4 GROUP BY order_flag, cache_size

5* ORDER BY order_flag, cache_size;

O CACHE_SIZE COUNT(*)

- ---------- ----------

N 0 7

N 9 4

N 10 4

N 20 52

Y 0 52

Y 20 8

Y 100 1

Sequence Ordering

� By default sequences are guaranteed to create unique numbers but when you
force ordering you force serialization which will always negatively impact
performance

� Do not order sequences unless the application demands it

178178

Sequences and RAC

� On RAC clusters watch for the DFS Lock Handle wait as an indication of
incorrectly sized caching: If found increase the caching size

� If a sequence is used to create a surrogate key and there are 1,000 inserts
each second caching 20 values means that 500 times a second the cache will
need to be refreshed

� This will negatively impact performance

� For this example cache 5,000+ values

179179

Binary XML Partitioning Example

� High performance means not running version 7.3.4 code in 11.2.0.4+
CREATE TABLE orders OF XMLType

XMLTYPE STORE AS BINARY XML

VIRTUAL COLUMNS (

SITE_ID AS (XMLCast(XMLQuery('/Order/@SiteId' PASSING OBJECT_VALUE RETURNING CONTENT) AS NUMBER)))

PARTITION BY RANGE (site_id) (

PARTITION p1 VALUES LESS THAN (10),

PARTITION p2 VALUES LESS THAN (20),

PARTITION pm VALUES LESS THAN (MAXVALUE));

DECLARE

x XMLTYPE;

BEGIN

x := XMLTYPE('<?xml version="1.0" encoding="utf-8"?>

<Order orderId="1" orderRevision="1" orderTimeStamp="01-JAN-2012">

<OrderHeader>

180180

<OrderHeader>

<AlternateIds>

<AlternateId altIdType="SiteId">12</AlternateId>

<AlternateId altIdType="MerchantOrderNumber">Merch</AlternateId>

<AlternateId altIdType="MarketplaceOrderNumber">Place</AlternateId>

<AlternateId altIdType="CustomerReferenceId">Ref</AlternateId>

<AlternateId altIdType="CartId">Cart</AlternateId>

<AlternateId altIdType="SessionId">1</AlternateId>

</AlternateIds>

</OrderHeader>

</Order>');

INSERT INTO orders VALUES (x);

END;

/

...

181

More ...

Aliasing and Fully Qualified Names

� When you do not use fully qualified names Oracle must do the work for you

� You write code once ... the database executes it many times

SELECT DISTINCT s.srvr_id

FROM servers s, serv_inst i

WHERE s.srvr_id = i.srvr_id;

SELECT DISTINCT s.srvr_id

FROM uwclass.servers s, uwclass.serv_inst i

WHERE s.srvr_id = i.srvr_id;

182182

Advanced Rewrite

� The DBMS_ADVANCED_REWRITE package is fully documented and
supported

� With Advanced Rewrite you can replace "bad" SQL with "good" SQL without
having access to, or fixing, application code

ALTER SYSTEM SET query_rewrite_integrity = 'TRUSTED'

COMMENT='Permanent Change Rewrite From ENFORCED to TRUSTED'

SCOPE=BOTH;

ALTER SYSTEM SET query_rewrite_integrity = 'TRUSTED'

COMMENT='Permanent Change Rewrite From ENFORCED to TRUSTED'

SCOPE=BOTH;

183183

� In 12c look at DBMS_SQL_TRANSLATOR

dbms_advanced_rewrite.declare_rewrite_equivalence(

name VARCHAR2,

source_stmt CLOB,

destination_stmt CLOB,

validate BOOLEAN := TRUE,

mode VARCHAR2 := 'TEXT_MATCH');

dbms_advanced_rewrite.declare_rewrite_equivalence(

name VARCHAR2,

source_stmt CLOB,

destination_stmt CLOB,

validate BOOLEAN := TRUE,

mode VARCHAR2 := 'TEXT_MATCH');

Demo

� In Oracle Database 10g memory management was ASMM (Automatic Shared
Memory Management)

� In Oracle 11g through 11.2.0.3 the default was AMM (Automatic Memory
Management) which was found to produce too many memory resizings and,
as a result, performance issues

� As of Database 11.2.0.4 Oracle has reverted to ASMM as the preferred
algorithm

� To determine the number of resize operations run the following SQL statement

Automatic Memory Management

184184

� To determine the number of resize operations run the following SQL statement
and if using AMM convert back to ASMM: If using ASMM optimize your
memory parameters to reduce their frequency

SELECT TRUNC(start_time), status, oper_type, oper_mode, parameter

FROM v$sga_resize_ops

WHERE initial_size <> final_size;

SELECT TRUNC(start_time), status, oper_type, oper_mode, parameter

FROM v$sga_resize_ops

WHERE initial_size <> final_size;

Block Change Tracking (1:3)

� If a database is small it is possible to perform a full RMAN backup every night:
This is rarely possible or necessary

� When configuring incremental backups we generally configure a separate
back every 15 to 120 minutes for archive logs and perform a nightly
incremental backup
� Level 0 once or twice a week

� Level 1 every night on which a Level 0 is not taken

� Incremental Level 1 backups will always benefit from block change tracking

185185

� Incremental Level 1 backups will always benefit from block change tracking

� To enable block change tracking you must create a block change tracking file

conn / as sysdba

SQL> SELECT filename, status, bytes

2 FROM v$block_change_tracking;

FILENAME STATUS BYTES

-- ---------- ----------

DISABLED

conn / as sysdba

SQL> SELECT filename, status, bytes

2 FROM v$block_change_tracking;

FILENAME STATUS BYTES

-- ---------- ----------

DISABLED

Block Change Tracking (2:3)

� The size of the file created is determined by the number of blocks in your
database's data files: The more blocks the larger the file

SQL> ALTER DATABASE ENABLE BLOCK CHANGE TRACKING

2* USING FILE 'c:\app\oracle\fast_recovery_area\ORABASE\bctf01.log';

Database altered.

SQL> SELECT filename, status, bytes

2 FROM v$block_change_tracking;

FILENAME STATUS BYTES

-- ---------- ----------

C:\APP\ORACLE\FAST_RECOVERY_AREA\ORABASE\BCTF01.LOG ENABLED 11599872

SQL> ALTER DATABASE ENABLE BLOCK CHANGE TRACKING

2* USING FILE 'c:\app\oracle\fast_recovery_area\ORABASE\bctf01.log';

Database altered.

SQL> SELECT filename, status, bytes

2 FROM v$block_change_tracking;

FILENAME STATUS BYTES

-- ---------- ----------

C:\APP\ORACLE\FAST_RECOVERY_AREA\ORABASE\BCTF01.LOG ENABLED 11599872

186186

C:\APP\ORACLE\FAST_RECOVERY_AREA\ORABASE\BCTF01.LOG ENABLED 11599872C:\APP\ORACLE\FAST_RECOVERY_AREA\ORABASE\BCTF01.LOG ENABLED 11599872

Block Change Tracking (3:3)

� When Block Change Tracking is enabled the instance spawns the CTWR
process which is responsible for writing log file entries

SQL> SELECT *

2 FROM v$sgastat

3 WHERE name LIKE '%CTWR%';

INST_ID POOL NAME BYTES CON_ID

---------- ------------ ------------------------------ ---------- ----------

1 large pool CTWR dba buffer 1728512 1

SQL> SELECT inst_id, sid, program, status

2 FROM v$session

SQL> SELECT *

2 FROM v$sgastat

3 WHERE name LIKE '%CTWR%';

INST_ID POOL NAME BYTES CON_ID

---------- ------------ ------------------------------ ---------- ----------

1 large pool CTWR dba buffer 1728512 1

SQL> SELECT inst_id, sid, program, status

2 FROM v$session

187187

2 FROM v$session

3 WHERE program LIKE '%CTWR%';

INST_ID SID PROGRAM STATUS

---------- ---------- -- --------

1 248 ORACLE.EXE (CTWR) ACTIVE

2 FROM v$session

3 WHERE program LIKE '%CTWR%';

INST_ID SID PROGRAM STATUS

---------- ---------- -- --------

1 248 ORACLE.EXE (CTWR) ACTIVE

Block Corruption (2:2)

� If corruption is found use the following SQL to identify the corrupted
segment(s)

� To eliminate the corruption
� DBMS_REPAIR

� Drop and rebuild the segment

SELECT de.owner, de.segment_name, de.segment_type

FROM dba_extents de, v$database_block_corruption vdbc

WHERE de.file_id = vdbc.file#

AND vdbc.block# BETWEEN de.block_id AND (de.block_id+(de.blocks-1));

SELECT de.owner, de.segment_name, de.segment_type

FROM dba_extents de, v$database_block_corruption vdbc

WHERE de.file_id = vdbc.file#

AND vdbc.block# BETWEEN de.block_id AND (de.block_id+(de.blocks-1));

188188

� Drop and rebuild the segment

� Open an SR with Oracle

Connection Pooling and Middle Tier Caching

� Opening and maintaining a database connection for each user
� Especially when dynamically creating sessions for requests made to a dynamic database-

driven web application are costly and waste resources

� A cache with multiple persistent database connections

� After a connection is created, it is placed in the pool, and it is reused so that a
new connection does not have to be established for each new session or
inquiry

� Each persistent connection can be reused when a future request to the

189189

� Each persistent connection can be reused when a future request to the
database is made

� Used to enhance the performance of executing commands in a database

Implicit Casts

� Code that does not correctly define data types will either fail to run or run very
inefficiently

The following example shows both the correct way and the incorrect way to
work with dates. The correct way is to perform an explicit cast

SQL> create table t (

2 datecol date);

Table created.

190190

SQL> insert into t values ('01-JAN-2015');

1 row created.

SQL> insert into t values (TO_DATE('01-JAN-2015'));

1 row created.

In Oracle dates are dates ... not strings. Similarly numbers should either be
explicitly cast with TO_NUMBER or only processed using numeric variables.

Implicit Commits

� An explicit commit must be present at the end of any transaction

� You can not rely on an ODBC or JDBC driver configuration to commit your
changes in a reliable and consistent way

� Similarly ... you must explicitly rollback in exception handlers as the ODBC
driver may perform an unintended commit

CREATE OR REPLACE PROCEDURE test AUTHID DEFINER IS

BEGIN

FOR i IN 1..10 LOOP

INSERT INTO t

(testcolumn)

191191

(testcolumn)

VALUES

(i);

END LOOP;

COMMIT;

EXCEPTION

WHEN dup_val_on_index THEN

ROLLBACK;

END;

/

Inactive Sessions

� Ignoring, for the moment, issues of grammar and spelling ... clearly there is a
technology problem

Attachments

Hi Bob

we have killed 250 sessions only that are blocking other sessions.

1. What session was causing the blocking lock? The client would normally like to know what SCHEMA and WHAT WAS THE LAST SQL
STATEMENT ISSUED...
Ans:blocking session

Attachments

Hi Bob

we have killed 250 sessions only that are blocking other sessions.

1. What session was causing the blocking lock? The client would normally like to know what SCHEMA and WHAT WAS THE LAST SQL
STATEMENT ISSUED...
Ans:blocking session

192192

Ans:blocking session
id's: (25,153,889,967,1098,1356,552,554,620,740,949,1172,2,224,410,596,610,635,814,817,937,1089,1177,

1195,1307,1316,1458,24,53,68,304,467,509,556,825,970,1035,1119,1925,38,686,830,832,1414,1511,333,506,

792,932,942,115,1008,1014,19,313,1198,1202,1224,1376);

Please Note: Not killed any active sessions for these blocking sessions. Killed only INACTIVE sessions.

Ans:blocking session
id's: (25,153,889,967,1098,1356,552,554,620,740,949,1172,2,224,410,596,610,635,814,817,937,1089,1177,

1195,1307,1316,1458,24,53,68,304,467,509,556,825,970,1035,1119,1925,38,686,830,832,1414,1511,333,506,

792,932,942,115,1008,1014,19,313,1198,1202,1224,1376);

Please Note: Not killed any active sessions for these blocking sessions. Killed only INACTIVE sessions.

Invalid Objects and Unusable Indexes

� Look for newly invalidated objects and unusable indexes

conn / as sysdba

SELECT owner, object_type, COUNT(*)

FROM dba_objects_ae

WHERE status = 'INVALID'

GROUP BY owner, object_type;

SELECT owner, table_name, index_name

FROM dba_indexes

WHERE status = 'UNUSABLE';

conn / as sysdba

SELECT owner, object_type, COUNT(*)

FROM dba_objects_ae

WHERE status = 'INVALID'

GROUP BY owner, object_type;

SELECT owner, table_name, index_name

FROM dba_indexes

WHERE status = 'UNUSABLE';

193193

Java Fetch Size

� Most applications that connect to the Oracle database do so through a driver
such as JDBC or ODBC

� By default these drivers are configured with an array size, usually about 10
that lead to slow response due to their inefficiency

� An optimal array size is likely between 100 and 250 yielding 1/10th to 1/25th

the number of I/O requests

� In JDBC the array size is set with the java.sql.Statement.setFetchSize()
parameter

194194

parameter

� The following are other parameters that can be used to optimize application
performance
� User statement.cancel or Statement.setQueryTimeout

� jdbc:oracle:thin:@(DESCRIPTION ...(SDU=32767)...)

"Jobs" and Human Nature

SQL> SELECT owner, job_name, job_type, trunc(start_date) SDATE, trunc(next_run_date) nxtrun, failure_count

2 FROM dba_scheduler_jobs

3* WHERE failure_count <> 0;

SQL> SELECT owner, job_name, job_type, trunc(start_date) SDATE, trunc(next_run_date) nxtrun, failure_count

2 FROM dba_scheduler_jobs

3* WHERE failure_count <> 0;

� Jobs that do not real work can be very expensive

� Find them

� Try to identify an owner

� Try to fix them

� If you can't ... disable them

195195

OWNER JOB_NAME STATE SDATE NXTRUN FAILURE_COUNT

--------------- ------------------------------ ---------- -------------------- -------------------- -------------

SYS SM$CLEAN_AUTO_SPLIT_MERGE SCHEDULED 14-MAR-2011 00:00:00 14-AUG-2013 00:00:00 17

SYS RSE$CLEAN_RECOVERABLE_SCRIPT SCHEDULED 14-MAR-2011 00:00:00 14-AUG-2013 00:00:00 20

SYS DRA_REEVALUATE_OPEN_FAILURES SCHEDULED 10

ORACLE_OCM MGMT_CONFIG_JOB SCHEDULED 4

EXFSYS RLM$SCHDNEGACTION SCHEDULED 13-AUG-2013 00:00:00 13-AUG-2013 00:00:00 3

EXFSYS RLM$EVTCLEANUP SCHEDULED 27-APR-2011 00:00:00 13-AUG-2013 00:00:00 2

RDBA5 LONG_RUN_SESS_JOB SCHEDULED 12-AUG-2013 00:00:00 13-AUG-2013 00:00:00 1

EISAI_PROD_TMS POPULATE_MORGAN_CATALOG DISABLED 01-JUN-2009 00:00:00 08-AUG-2013 00:00:00 2559

OWNER JOB_NAME STATE SDATE NXTRUN FAILURE_COUNT

--------------- ------------------------------ ---------- -------------------- -------------------- -------------

SYS SM$CLEAN_AUTO_SPLIT_MERGE SCHEDULED 14-MAR-2011 00:00:00 14-AUG-2013 00:00:00 17

SYS RSE$CLEAN_RECOVERABLE_SCRIPT SCHEDULED 14-MAR-2011 00:00:00 14-AUG-2013 00:00:00 20

SYS DRA_REEVALUATE_OPEN_FAILURES SCHEDULED 10

ORACLE_OCM MGMT_CONFIG_JOB SCHEDULED 4

EXFSYS RLM$SCHDNEGACTION SCHEDULED 13-AUG-2013 00:00:00 13-AUG-2013 00:00:00 3

EXFSYS RLM$EVTCLEANUP SCHEDULED 27-APR-2011 00:00:00 13-AUG-2013 00:00:00 2

RDBA5 LONG_RUN_SESS_JOB SCHEDULED 12-AUG-2013 00:00:00 13-AUG-2013 00:00:00 1

EISAI_PROD_TMS POPULATE_MORGAN_CATALOG DISABLED 01-JUN-2009 00:00:00 08-AUG-2013 00:00:00 2559

Redo Log Switch Anomalies (1:3)

� Redo log switches should occur between 4 and 12 times per hour (once every
5 to 15 minutes) to balance performance with transaction security

� Monitoring redo log switches aggregated by the hour can alert you to
incorrectly sized redo logs, behavioral changes, unexpected workloads, and
outages

� The SQL statement on the following page can be used to monitor the switches
on stand-alone and RAC One-Node systems and provide general guide with
RAC clusters

196196

Redo Log Switch Anomalies (2:3)

SELECT TO_CHAR(first_time,'MMDD') MMDD,

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'00',1,0)),'99') "00",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'01',1,0)),'99') "01",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'02',1,0)),'99') "02",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'03',1,0)),'99') "03",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'04',1,0)),'99') "04",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'05',1,0)),'99') "05",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'06',1,0)),'99') "06",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'07',1,0)),'99') "07",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'08',1,0)),'99') "08",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'09',1,0)),'99') "09",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'10',1,0)),'99') "10",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'11',1,0)),'99') "11",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'12',1,0)),'99') "12",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'13',1,0)),'99') "13",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'14',1,0)),'99') "14",

SELECT TO_CHAR(first_time,'MMDD') MMDD,

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'00',1,0)),'99') "00",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'01',1,0)),'99') "01",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'02',1,0)),'99') "02",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'03',1,0)),'99') "03",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'04',1,0)),'99') "04",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'05',1,0)),'99') "05",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'06',1,0)),'99') "06",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'07',1,0)),'99') "07",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'08',1,0)),'99') "08",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'09',1,0)),'99') "09",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'10',1,0)),'99') "10",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'11',1,0)),'99') "11",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'12',1,0)),'99') "12",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'13',1,0)),'99') "13",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'14',1,0)),'99') "14",

197197

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'14',1,0)),'99') "14",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'15',1,0)),'99') "15",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'16',1,0)),'99') "16",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'17',1,0)),'99') "17",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'18',1,0)),'99') "18",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'19',1,0)),'99') "19",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'20',1,0)),'99') "20",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'21',1,0)),'99') "21",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'22',1,0)),'99') "22",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'23',1,0)),'99') "23"

FROM v$log_history

GROUP BY TO_CHAR(first_time,'MMDD')

ORDER BY 1;

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'14',1,0)),'99') "14",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'15',1,0)),'99') "15",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'16',1,0)),'99') "16",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'17',1,0)),'99') "17",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'18',1,0)),'99') "18",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'19',1,0)),'99') "19",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'20',1,0)),'99') "20",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'21',1,0)),'99') "21",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'22',1,0)),'99') "22",

TO_CHAR(SUM(DECODE(TO_CHAR(first_time,'HH24'),'23',1,0)),'99') "23"

FROM v$log_history

GROUP BY TO_CHAR(first_time,'MMDD')

ORDER BY 1;

Redo Log Switch Anomalies (3:3)

MMDD 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

---- ---

0609 16 11 9 8 8 10 12 8 8 10 8 10 14 10 11 15 15 8 12 8 7 6 9 7

0610 13 12 8 9 7 6 11 9 6 8 7 8 12 6 7 6 8 7 10 7 4 4 4 5

0611 12 8 5 9 9 7 11 7 6 7 8 5 12 9 10 8 9 12 12 10 6 6 9 8

0612 13 12 7 9 7 9 10 10 7 7 9 8 11 7 7 8 7 7 11 9 5 6 8 7

0613 12 11 7 8 8 7 13 7 9 7 8 7 13 10 9 8 8 8 11 8 7 5 7 6

0614 15 10 9 9 8 9 13 9 9 7 11 13 11 9 8 9 13 9 12 9 7 9 7 7

0615 15 10 10 8 10 9 12 8 9 8 9 7 13 6 8 7 7 7 15 10 7 7 7 5

0616 13 8 8 7 7 6 10 8 11 7 8 6 11 7 12 13 13 14 13 9 9 9 7 8

0617 15 13 10 9 8 9 16 8 8 10 9 10 16 11 10 10 8 11 13 8 9 9 7 9

0618 12 13 15 15 13 13 15 13 9 12 8 11 14 9 10 9 9 8 14 9 8 8 9 8

0619 16 11 10 11 9 9 13 12 10 9 12 12 17 8 9 9 11 11 14 9 9 11 10 12

0620 19 15 11 10 10 10 19 11 9 9 9 9 13 7 15 10 11 11 12 10 9 11 11 10

0621 13 16 11 9 10 13 16 8 14 9 11 12 17 10 10 11 8 11 14 8 11 14 8 11

0622 16 13 13 11 11 9 16 9 9 11 10 11 17 10 9 10 10 10 13 14 9 10 10 8

0623 19 13 12 13 13 11 16 12 11 11 11 11 16 9 10 13 2 14 14 8 9 8 8 8

0624 14 9 9 9 7 9 11 8 8 7 8 8 14 7 8 7 9 3 6 0 0 0 0 0

0625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

0626 0 1 0 0 0 0 0 0 0 4 0 0 0 2 2 3 2 7 5 6 1 0 0 0

0627 3 10 0 0 0 5 0 1 10 0 0 0 0 0 1 0 1 0 2 5 3 7 1 0

MMDD 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

---- ---

0609 16 11 9 8 8 10 12 8 8 10 8 10 14 10 11 15 15 8 12 8 7 6 9 7

0610 13 12 8 9 7 6 11 9 6 8 7 8 12 6 7 6 8 7 10 7 4 4 4 5

0611 12 8 5 9 9 7 11 7 6 7 8 5 12 9 10 8 9 12 12 10 6 6 9 8

0612 13 12 7 9 7 9 10 10 7 7 9 8 11 7 7 8 7 7 11 9 5 6 8 7

0613 12 11 7 8 8 7 13 7 9 7 8 7 13 10 9 8 8 8 11 8 7 5 7 6

0614 15 10 9 9 8 9 13 9 9 7 11 13 11 9 8 9 13 9 12 9 7 9 7 7

0615 15 10 10 8 10 9 12 8 9 8 9 7 13 6 8 7 7 7 15 10 7 7 7 5

0616 13 8 8 7 7 6 10 8 11 7 8 6 11 7 12 13 13 14 13 9 9 9 7 8

0617 15 13 10 9 8 9 16 8 8 10 9 10 16 11 10 10 8 11 13 8 9 9 7 9

0618 12 13 15 15 13 13 15 13 9 12 8 11 14 9 10 9 9 8 14 9 8 8 9 8

0619 16 11 10 11 9 9 13 12 10 9 12 12 17 8 9 9 11 11 14 9 9 11 10 12

0620 19 15 11 10 10 10 19 11 9 9 9 9 13 7 15 10 11 11 12 10 9 11 11 10

0621 13 16 11 9 10 13 16 8 14 9 11 12 17 10 10 11 8 11 14 8 11 14 8 11

0622 16 13 13 11 11 9 16 9 9 11 10 11 17 10 9 10 10 10 13 14 9 10 10 8

0623 19 13 12 13 13 11 16 12 11 11 11 11 16 9 10 13 2 14 14 8 9 8 8 8

0624 14 9 9 9 7 9 11 8 8 7 8 8 14 7 8 7 9 3 6 0 0 0 0 0

0625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

0626 0 1 0 0 0 0 0 0 0 4 0 0 0 2 2 3 2 7 5 6 1 0 0 0

0627 3 10 0 0 0 5 0 1 10 0 0 0 0 0 1 0 1 0 2 5 3 7 1 0

198198

0627 3 10 0 0 0 5 0 1 10 0 0 0 0 0 1 0 1 0 2 5 3 7 1 0

0629 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 0 0 6 7 6

0630 7 4 23 19 9 10 5 6 7 17 19 17 15 17 15 43 40 32 17 15 14 20 13 15

0701 15 12 14 12 13 12 13 17 15 17 20 20 18 18 17 15 14 13 10 10 15 15 13 19

0702 21 22 20 18 14 14 12 13 11 11 14 14 14 10 9 10 9 10 11 9 11 9 10 12

0703 9 13 10 17 14 17 15 17 23 20 19 20 17 19 16 17 15 17 15 15 15 16 16 18

0704 22 19 19 18 16 15 13 13 14 11 13 10 12 14 10 12 14 11 9 11 12 13 12 9

0705 14 13 9 11 10 12 13 11 11 8 10 10 11 11 11 12 10 10 9 10 8 9 12 7

0706 14 15 11 12 9 15 13 12 12 9 12 14 12 12 12 12 13 11 8 9 12 13 2 0

0707 0 0 1 0 3 15 10 10 7 8 10 11 12 8 6 9 13 12 9 8 9 8 10 10

0708 16 9 8 15 10 11 9 8 8 14 9 10 10 8 8 14 15 10 9 9 8 9 10 10

0709 13 12 9 10 10 9 9 10 11 11 8 9 9 8 9 13 8 9 6 9 9 11 10 9

0710 12 10 9 10 9 12 9 8 8 11 7 10 11 9 9 13 10 9 8 9 11 12 10 10

0711 15 12 9 13 9 12 8 10 11 13 9 8 10 9 8 12 11 12 9 9 10 11 10 8

0712 13 12 10 13 10 10 9 7 10 11 9 10 12 12 12 15 12 9 8 9 11 12 12 12

0713 14 12 12 11 10 10 12 12 12 15 10 11 11 10 4 5 15 14 10 9 8 8 13 6

0714 12 12 9 9 11 10 10 9 10 9 14 7 7 8 8 9 14 9 9 10 12 8 13 10

0715 10 10 9 14 12 15 12 14 13 15 10 11 9 4 8 6 8 7 6 7 8 8 8 8

0716 10 11 9 8 8 9 9 6 6 7 7 12 7 9 15 14 13 16 12 14 11 9 6 7

0717 10 10 9 9 9 10 12 14 11 10 12 9 8 12 7 3 0 0 0 0 0 0 0 0

0627 3 10 0 0 0 5 0 1 10 0 0 0 0 0 1 0 1 0 2 5 3 7 1 0

0629 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 0 0 6 7 6

0630 7 4 23 19 9 10 5 6 7 17 19 17 15 17 15 43 40 32 17 15 14 20 13 15

0701 15 12 14 12 13 12 13 17 15 17 20 20 18 18 17 15 14 13 10 10 15 15 13 19

0702 21 22 20 18 14 14 12 13 11 11 14 14 14 10 9 10 9 10 11 9 11 9 10 12

0703 9 13 10 17 14 17 15 17 23 20 19 20 17 19 16 17 15 17 15 15 15 16 16 18

0704 22 19 19 18 16 15 13 13 14 11 13 10 12 14 10 12 14 11 9 11 12 13 12 9

0705 14 13 9 11 10 12 13 11 11 8 10 10 11 11 11 12 10 10 9 10 8 9 12 7

0706 14 15 11 12 9 15 13 12 12 9 12 14 12 12 12 12 13 11 8 9 12 13 2 0

0707 0 0 1 0 3 15 10 10 7 8 10 11 12 8 6 9 13 12 9 8 9 8 10 10

0708 16 9 8 15 10 11 9 8 8 14 9 10 10 8 8 14 15 10 9 9 8 9 10 10

0709 13 12 9 10 10 9 9 10 11 11 8 9 9 8 9 13 8 9 6 9 9 11 10 9

0710 12 10 9 10 9 12 9 8 8 11 7 10 11 9 9 13 10 9 8 9 11 12 10 10

0711 15 12 9 13 9 12 8 10 11 13 9 8 10 9 8 12 11 12 9 9 10 11 10 8

0712 13 12 10 13 10 10 9 7 10 11 9 10 12 12 12 15 12 9 8 9 11 12 12 12

0713 14 12 12 11 10 10 12 12 12 15 10 11 11 10 4 5 15 14 10 9 8 8 13 6

0714 12 12 9 9 11 10 10 9 10 9 14 7 7 8 8 9 14 9 9 10 12 8 13 10

0715 10 10 9 14 12 15 12 14 13 15 10 11 9 4 8 6 8 7 6 7 8 8 8 8

0716 10 11 9 8 8 9 9 6 6 7 7 12 7 9 15 14 13 16 12 14 11 9 6 7

0717 10 10 9 9 9 10 12 14 11 10 12 9 8 12 7 3 0 0 0 0 0 0 0 0

� Another real-world example of redo log switches helping to focus attention

Redo Log Switch Anomalies (4:4)

RAC Server Node 1
MMDD 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

---- ----

0804 0 0 0 0 0 0 0 0 0 0 0 0 5 32 18 65 91 13 12 20 84 9 14 9

0805 137 112 26 27 141 17 21 9 85 13 21 17 96 23 23 24 91 13 11 21 86 11 14 9

0806 151 111 21 24 96 41 50 14 84 22 20 22 91 18 17 18 92 24 10 11 83 9 14 20

0807 139 100 32 30 99 43 49 19 105 17 31 14 76 23 27 25 111 20 15 18 86 13 13 10

0808 145 99 29 30 109 52 48 11 102 25 47 24 101 23 20 23 117 31 30 16 91 12 11 9

0809 123 83 65 37 93 17 25 10 102 23 44 25 111 37 24 29 98 19 29 16 92 16 15 9

RAC Server Node 1
MMDD 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

---- ----

0804 0 0 0 0 0 0 0 0 0 0 0 0 5 32 18 65 91 13 12 20 84 9 14 9

0805 137 112 26 27 141 17 21 9 85 13 21 17 96 23 23 24 91 13 11 21 86 11 14 9

0806 151 111 21 24 96 41 50 14 84 22 20 22 91 18 17 18 92 24 10 11 83 9 14 20

0807 139 100 32 30 99 43 49 19 105 17 31 14 76 23 27 25 111 20 15 18 86 13 13 10

0808 145 99 29 30 109 52 48 11 102 25 47 24 101 23 20 23 117 31 30 16 91 12 11 9

0809 123 83 65 37 93 17 25 10 102 23 44 25 111 37 24 29 98 19 29 16 92 16 15 9

199199

60 corresponds to one change per minute ... the ideal range is 4 to 12
Addressed by resizing redo logs from 400MB to 4GB

And rescheduling many of the jobs

0809 123 83 65 37 93 17 25 10 102 23 44 25 111 37 24 29 98 19 29 16 92 16 15 9

0810 169 120 52 32 125 58 38 9 109 17 26 14 104 13 17 15 93 13 16 11 61 10 10 9

0811 107 82 51 34 85 17 22 10 73 10 12 11 92 32 13 69 65 11 11 10 60 9 12 9

0812 149 121 26 15 70 16 24 11 95 34 15 18 34 67 21 21 87 11 13 9 77 9 14 9

0813 115 76 55 56 27 9 9 9 11 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0

0809 123 83 65 37 93 17 25 10 102 23 44 25 111 37 24 29 98 19 29 16 92 16 15 9

0810 169 120 52 32 125 58 38 9 109 17 26 14 104 13 17 15 93 13 16 11 61 10 10 9

0811 107 82 51 34 85 17 22 10 73 10 12 11 92 32 13 69 65 11 11 10 60 9 12 9

0812 149 121 26 15 70 16 24 11 95 34 15 18 34 67 21 21 87 11 13 9 77 9 14 9

0813 115 76 55 56 27 9 9 9 11 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0

Scheduler Job Failures

� It is a common occurrence that DBMS_SCHEDULER jobs fail and no one
notices because
� The job has been automatically running for a long time but no one using the output

� Job failures are not reported in the alert log

� The following example shows how to identify failed jobs

� The job shown was disabled on discovering the failure count
SQL> SELECT owner, job_name, job_type, trunc(start_date) SDATE, trunc(next_run_date) nxtrun, failure_count

2 FROM dba_scheduler_jobs

3* WHERE failure_count <> 0;

SQL> SELECT owner, job_name, job_type, trunc(start_date) SDATE, trunc(next_run_date) nxtrun, failure_count

2 FROM dba_scheduler_jobs

3* WHERE failure_count <> 0;

200200

3* WHERE failure_count <> 0;

OWNER JOB_NAME STATE SDATE NXTRUN FAILURE_COUNT

--------------- ------------------------------ ---------- -------------------- -------------------- -------------

SYS SM$CLEAN_AUTO_SPLIT_MERGE SCHEDULED 14-MAR-2011 00:00:00 14-AUG-2013 00:00:00 17

SYS RSE$CLEAN_RECOVERABLE_SCRIPT SCHEDULED 14-MAR-2011 00:00:00 14-AUG-2013 00:00:00 20

SYS DRA_REEVALUATE_OPEN_FAILURES SCHEDULED 10

ORACLE_OCM MGMT_CONFIG_JOB SCHEDULED 4

EXFSYS RLM$SCHDNEGACTION SCHEDULED 13-AUG-2013 00:00:00 13-AUG-2013 00:00:00 3

EXFSYS RLM$EVTCLEANUP SCHEDULED 27-APR-2011 00:00:00 13-AUG-2013 00:00:00 2

RDBA5 LONG_RUN_SESS_JOB SCHEDULED 12-AUG-2013 00:00:00 13-AUG-2013 00:00:00 1

EISAI_PROD_TMS POPULATE_MORGAN_CATALOG DISABLED 01-JUN-2009 00:00:00 08-AUG-2013 00:00:00 2559

3* WHERE failure_count <> 0;

OWNER JOB_NAME STATE SDATE NXTRUN FAILURE_COUNT

--------------- ------------------------------ ---------- -------------------- -------------------- -------------

SYS SM$CLEAN_AUTO_SPLIT_MERGE SCHEDULED 14-MAR-2011 00:00:00 14-AUG-2013 00:00:00 17

SYS RSE$CLEAN_RECOVERABLE_SCRIPT SCHEDULED 14-MAR-2011 00:00:00 14-AUG-2013 00:00:00 20

SYS DRA_REEVALUATE_OPEN_FAILURES SCHEDULED 10

ORACLE_OCM MGMT_CONFIG_JOB SCHEDULED 4

EXFSYS RLM$SCHDNEGACTION SCHEDULED 13-AUG-2013 00:00:00 13-AUG-2013 00:00:00 3

EXFSYS RLM$EVTCLEANUP SCHEDULED 27-APR-2011 00:00:00 13-AUG-2013 00:00:00 2

RDBA5 LONG_RUN_SESS_JOB SCHEDULED 12-AUG-2013 00:00:00 13-AUG-2013 00:00:00 1

EISAI_PROD_TMS POPULATE_MORGAN_CATALOG DISABLED 01-JUN-2009 00:00:00 08-AUG-2013 00:00:00 2559

Objects Named With Keywords

� How to test a word to determine whether it can be used

SQL> SELECT keyword

2 FROM v$reserved_words

3 WHERE keyword LIKE ‘ID%’;

KEYWORD

ID

IDENTIFIED

IDGENERATORS

IDLE_TIME

IDENTITY

IDENTIFIER

201201

IDENTIFIER

6 rows selected.

Columns should never be named "ID." Best practice is to identify the nature of the ID, for example,
MEMBER_ID or ORDER_ID. This holds true for columns such as COMMENTS and DATES.

Where Are Sorts Taking Place?

� In memory or on disk?

SELECT a.value "Disk Sorts", b.value "Memory Sorts",

ROUND((100*b.value)/DECODE((a.value+b.value), 0,1,(a.value+b.value)),2) "Pct Memory Sorts"

FROM v$sysstat a, v$sysstat b

WHERE a.name = 'sorts (disk)'

AND b.name = 'sorts (memory)';

SELECT a.value "Disk Sorts", b.value "Memory Sorts",

ROUND((100*b.value)/DECODE((a.value+b.value), 0,1,(a.value+b.value)),2) "Pct Memory Sorts"

FROM v$sysstat a, v$sysstat b

WHERE a.name = 'sorts (disk)'

AND b.name = 'sorts (memory)';

202202

Undo Tablespace Size and Retention

� Check undo tablespace size and resize in accordance with any advisory

set serveroutput on

DECLARE

prob VARCHAR2(100);

reco VARCHAR2(100);

rtnl VARCHAR2(100);

retn PLS_INTEGER;

utbs PLS_INTEGER;

retv PLS_INTEGER;

BEGIN

retv := dbms_undo_adv.undo_health(prob, reco, rtnl, retn, utbs);

set serveroutput on

DECLARE

prob VARCHAR2(100);

reco VARCHAR2(100);

rtnl VARCHAR2(100);

retn PLS_INTEGER;

utbs PLS_INTEGER;

retv PLS_INTEGER;

BEGIN

retv := dbms_undo_adv.undo_health(prob, reco, rtnl, retn, utbs);

203203

retv := dbms_undo_adv.undo_health(prob, reco, rtnl, retn, utbs);

dbms_output.put_line('Problem: ' || prob);

dbms_output.put_line('Recmmnd: ' || reco);

dbms_output.put_line('Rationl: ' || rtnl);

dbms_output.put_line('Retentn: ' || TO_CHAR(retn));

dbms_output.put_line('UTBSize: ' || TO_CHAR(utbs));

END;

/

retv := dbms_undo_adv.undo_health(prob, reco, rtnl, retn, utbs);

dbms_output.put_line('Problem: ' || prob);

dbms_output.put_line('Recmmnd: ' || reco);

dbms_output.put_line('Rationl: ' || rtnl);

dbms_output.put_line('Retentn: ' || TO_CHAR(retn));

dbms_output.put_line('UTBSize: ' || TO_CHAR(utbs));

END;

/

204

PL/SQL

Debug Mode Compilation

� It is "Best Practice" to always build new schemas, and compile database code,
using SQL*Plus running pure ASCII scripts

� Many of the GUI tools used by Developers, and sometimes by DBAs, by
default compile PL/SQL objects in debug mode

� If debug mode objects are found they should be recompiled using SQL*Plus
SELECT owner, name, type

FROM dba_plsql_object_settings

WHERE plsql_debug='TRUE'

ORDER BY 1,3,2;

SELECT owner, name, type

FROM dba_plsql_object_settings

WHERE plsql_debug='TRUE'

ORDER BY 1,3,2;

205205

PL/SQL Warnings

� New warnings in 10g and 11g: No new warnings in 12c

� Invaluable for finding suboptimal code, use of reserved words, inappropriate
usages, and orphans Embedded SQL vs. Database APIs
� Severe

� 5018 - omitted optional AUTHID clause

� 5019 - deprecated language element

� 5020 - parameter name must be identified

� Informative

� 6016 - native code generation turned off (size/time)

206206

� 6016 - native code generation turned off (size/time)

� 6017 - operation will raise an exception

� 6018 - an infinity or NaN value computed or used

� Performance

� None

207

Wrap-Up

Summary

� Do not guess

� If your problem is not caused by slow hardware then faster hardware will just create a

problem faster

� Gather information from a date-time range when everything was good and compare with

the date-time range when the problem was observed

� If the problem is slow SQL ... is the SQL statement itself slow or is it the entire environment

that should be examined?

� If the problem is related to CPU ... do you need more/faster CPUs or a better design?

208208

� If the problem is related to CPU ... do you need more/faster CPUs or a better design?

� If the problem is related to I/O ... do you need a new SAN or better indexing?

� If the problem is related to network bandwidth ... do you need new NIC cards and to stop

network virtualization? Yes you probably do

Conclusion

� Do not tune by guessing

� Do not blame everything on bad SQL statements

� Until you can prove that the root cause is the SQL

� Use the scientific method
� Construct a hypothesis

� Test the hypothesis by doing experiments

� Validate your conclusion

� Only rewrite SQL after you have established conclusively that the root cause

209209

� Only rewrite SQL after you have established conclusively that the root cause
is the way a statement has been written and that rewriting the SQL statement
will address ALL issues

� You will most likely not be rewriting a lot of SQL statements

Conclusion

� Do not tune by guessing

� Do not blame everything on bad SQL statements

� Until you can prove that the root cause is the SQL

� Use the scientific method
� Construct a hypothesis

� Test the hypothesis by doing experiments

� Validate your conclusion

� Only rewrite SQL after you have established conclusively that the root cause

210210

� Only rewrite SQL after you have established conclusively that the root cause
is the way a statement has been written and that rewriting the SQL statement
will address ALL issues

� You will most likely not be rewriting a lot of SQL statements

Thank You For Your Time

211

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorgan11g

212

