
Segment Compression with
Oracle Database 11g

for DBAs and Developers

Daniel A. Morgan

presentation for:

Oracle Users Group Finland
November 2009 Conference

Introduction

� Daniel Morgan – damorgan@u.washington.edu

� Oracle Ace Director

� University of Washington, retired

� The Morgan of Morgan's Library on the web

� www.morganslibrary.org/library.html

� Member: Western Washington Oracle Users Group

� Member: UK Oracle Users Group

� Member: Oracle Applications Users Group

� Frequent speaker

Daniel A. Morgan

� Frequent speaker

� Oracle since version 6

� 11g beta test site

My Home

Daniel A. Morgan

My Home

Daniel A. Morgan

My Clock

Daniel A. Morgan

Morgan’s Library: www.morganslibrary.org

Daniel A. Morgan

How Can I?

Daniel A. Morgan

Since I was here last year

Daniel A. Morgan

Daniel A. Morgan

� Why the interest in compression?

� A brief history of Oracle Database Compression

� Index Compression

� Data Segment Compression

� LOB Compression

� Advanced Compression in 11gR1

� Advanced Compression in 11gR2

Agenda

Daniel A. Morgan

� Advanced Compression in 11gR2

� Hybrid Columnar Compression & Exadata V2

We all have our favorite customers: This is mine

Store
More
Data

Maintain
Performance

Honor
the same

Daniel A. Morgan

the same
Service
Level

Agreement

GB, TB, EB
What's the
big deal?

� Explosion in Data Volumes

� Regulatory and audit requirements

� Online content

� As data volume expands

performance often declines

� Disk costs money

Why Compress Segments?

Daniel A. Morgan

� Powerful and efficient

compression is key

What Is Traditional Compression?

� A trade-off between CPU and Disk I/O

� Use spare CPU cycles to decrease the bytes written and read

� First introduced in Oracle 9.2.0.1

� Transparent to applications, SQL, and PL/SQL

� May improve performance by requiring the transfer of

fewer bytes from disk through the network, into the CPU,

to be stored in the buffer cache

Daniel A. Morgan

to be stored in the buffer cache

� Increase the amount of data stored on existing disk

How Traditional Compression Works

� A grossly oversimplified "how it works"

1. Oracle examines full blocks for duplicates

2. Creates a symbol that is stored in the block header

3. Rewrites the block substituting the symbol for the values it
represents

� Compression is performed at the block level
not the table like DB2

Daniel A. Morgan

City State Postal Code

Hot Springs National Park AR 71901

Hot Springs National Park AR 71902

Hot Springs National Park AR 71903

Hot Springs National Park AR 71913

City State Postal Code

Hot Springs National Park AR 71901

" " "02

" " "03

" " "13

128 btyes 38 btyes

9.2 Index Compression

� Most often used with multi-column indexes to

compress duplicates in leading columns

CREATE INDEX ix_serv_inst

ON serv_inst (srvr_id, custacct_id);

ANALYZE INDEX ix_serv_inst VALIDATE STRUCTURE;

SELECT opt_cmpr_count, opt_cmpr_pctsave

FROM index_stats;

Daniel A. Morgan

SELECT sum(bytes)

FROM user_segments

WHERE segment_name = 'IX_PCODES';

OPT_CMPR_COUNT OPT_CMPR_PCTSAVE

-------------- ----------------

1 10

9.2 Data Segment Compression

� Heap Organized Tables

� Materialized Views

CREATE TABLE reg_tab AS

SELECT *

FROM dba_tables;

CREATE TABLE COMPRESS comp_tab AS

SELECT *

FROM dba_tables;

exec dbms_stats.gather_table_stats(USER, 'REG_TAB');

Daniel A. Morgan

exec dbms_stats.gather_table_stats(USER, 'REG_TAB');

exec dbms_stats.gather_table_stats(USER, 'COMP_TAB');

SELECT table_name, blocks

FROM user_tables

WHERE table_name LIKE '%TAB';

SELECT table_name, blocks FROM user_tables WHERE table_name LIKE '%TAB';

TABLE_NAME BLOCKS

------------------------------ ----------

REG_TAB 109

COMP_TAB 20

10.1 LOB Compression

� UTL_COMPRESS Built-in Package

DECLARE

b BLOB;

r RAW(32);

handle BINARY_INTEGER;

BEGIN

SELECT iblob

INTO b

FROM test

WHERE fname = 'Uncompressed'

FOR UPDATE;

handle := utl_compress.lz_compress_open(b);

Daniel A. Morgan

handle := utl_compress.lz_compress_open(b);

r := utl_raw.cast_to_raw('ABC');

utl_compress.lz_compress_add(handle, b, r);

utl_compress.lz_compress_close(handle, b);

END;

/

� No significant changes in 10gR2

11.1 Compression

� Index and Segment Compression

� The Advanced Compression Option includes

� Data Guard Network Compression

� Data Pump Compression

� Fast RMAN Compression

� OLTP Table Compression

� SecureFile Compression and Deduplication

Daniel A. Morgan

� Leveraged in 11gR2 DBFS (DataBase File System)

11.1 Many Options

� Compressed Tablespaces

� Segment Compression

� COMPRESS

� COMPRESS FOR DIRECT_LOAD [OPERATIONS]

� COMPRESS FOR ALL [OPERATIONS]

� user_tablespaces.compress_for column

Advanced Compression

Daniel A. Morgan

LOB Compression

Compression

Advanced Compression

SecureFiles

� Part of the Advanced Compression option

CREATE TABLE sec_tab_kd (

rid NUMBER(5),

bcol BLOB)

LOB (bcol)

STORE AS SECUREFILE bcol (

TABLESPACE securefiletbs

RETENTION MIN 3600

KEEP_DUPLICATES

NOCOMPRESS

ECRYPT

CACHE READS)

CREATE TABLE secfile_table (

rid NUMBER(5),

bcol BLOB)

LOB (bcol)

STORE AS SECUREFILE bcol2 (

TABLESPACE securefiletbs

RETENTION MIN 3600

COMPRESS

ENCRYPT

CACHE READS)

TABLESPACE uwdata;

Daniel A. Morgan

� What Oracle now calls DBFS (Database File System)

CACHE READS)

TABLESPACE uwdata;
TABLESPACE uwdata;

11.2 Compression

� Segment Compression

� The Advanced Compression Option includes

� Data Guard Network Compression

� Data Pump Compression

� Fast RMAN Compression

� OLTP Table Compression

� SecureFile Compression and Deduplication

Daniel A. Morgan

� Hybrid Columnar Compression

� Warehouse Compression (Query)

� Archival Compression (Archive)

11.2 Segment Compression Changes

� Compressed Tables

Advanced Compression
OLTP replaces ALL OPERATIONS

Hybrid Columnar Compression
Compress For Query
Compress For Archive

Compression
BASIC replaces DIRECT_LOAD

Daniel A. Morgan

LOB Compression

11.2 Table Segment Compression

� Compress for OLTP

� Compress for Query

CREATE TABLE ct1

COMPRESS FOR OLTP

AS

SELECT * FROM dba_objects;

CREATE TABLE ct2

COMPRESS FOR QUERY HIGH

AS

SELECT * FROM dba_objects;

Daniel A. Morgan

� Compress for Archive
CREATE TABLE ct3

COMPRESS FOR ARCHIVE LOW

AS

SELECT * FROM dba_objects;

Hybrid

Columnar

Compression

Daniel A. Morgan

Compression

Hybrid Columnar Compression and Performance

� Is compression a cost/space/power/cooling savings

feature …

� or a performance feature?

� Yes

Daniel A. Morgan

Hybrid Columnar Compression and Performance

� Oracle Database doesn’t decompress data for the sheer

fun of it. Decompression is a part of query processing

� Query processing starts with I/O and continues on to

filtration and column projection

� Compression ratio is also the physical I/O savings ratio

� Decompression is inserted between I/O and SQL

processing. Strictly speaking, it is a tax

Daniel A. Morgan

processing. Strictly speaking, it is a tax

� Spending CPU cycles to uncompress data takes CPU

from query processing

� Decompression needs to produce a lot of output to pay for

itself

Two New Features in Exadata V2

Warehouse Compression

� 10x average storage savings

� 10x reduction in Scan IO

Archive Compression

� 15x average storage savings

� Up to 70x on some data

� Some access overhead

� For cold or historical data

Optimized for SpeedOptimized for Speed Optimized for SpaceOptimized for Space

Daniel A. Morgan

Smaller Warehouse

Faster Performance

Reclaim 93% of Disks

Keep Data Online

Completely application transparent

� New technology in Oracle Exadata V2

� New method for organizing data in a database block

� A second columnar generation technology combining the best of
columnar and row organization

� Columnar Organization

� Transparently organizes and stores table data by column

� Improves analytic and aggregate query performance

� 93% of the performance of full columnar w/o the drawbacks

How It Works

Daniel A. Morgan

� 93% of the performance of full columnar w/o the drawbacks

� Row Organization

� The best storage for workloads with updates or trickle feeds

� A row is self-contained within a ‘compression unit’

� Minimal I/O to retrieve entire row

� Efficient index lookups, updates, and deletes

� Compression changes I/O to CPU balance considerations

Database Block Anatomy

Header

Free Space

Table Dictionary

Row Dictionary

Free Space

General block information

Table info in clusters

Row info in block (2 bytes/row)

Used when a new row is inserted
or an existing row is updated

Daniel A. Morgan

Row Data

Segment data (table or index)

� Tables are organized into Compression Units (CU)

� CU's are logical structure spanning multiple database blocks
� Typically 32K - (4 x 8K block size)

� Data is organized by column during data load

� Each column is compressed separately

� Column organization brings similar values close together

Logical Compression Unit

Daniel A. Morgan

Block Header Block Header Block Header Block Header

CU Header

Col 1

Col 2

Col7Col3

Col4

Col5

Col8Col6

Col8

Logical Compression Unit

CREATE TABLE demo (

person_id NUMBER(10),

first_name VARCHAR2(20),

mid_initial VARCHAR2(4),

last_name VARCHAR2(35),

date_of_birth DATE,

hire_date DATE,

status VARCHAR2(5),

comments VARCHAR2(500));

Logical Compression Unit

Daniel A. Morgan

Block Header Block Header Block Header Block Header

CU Header

Col 1

Col 2

Col7Col3

Col4

Col5

Col8Col6

Col8

Logical Compression Unit

� DML with Hybrid Columnar Compression

� Direct Load operations result in Hybrid Columnar
Compression

� Parallel DML, INSERT /*+ APPEND */, Direct Path SQL*LDR

� Data is transformed into columnar format and compressed

during load

� Conventional INSERT results in OLTP Compression

� Updated rows automatically migrate to OLTP Compression

Hybrid Columnar Compression

Daniel A. Morgan

Updated rows automatically migrate to OLTP Compression

� Queries with Hybrid Columnar Compression

� Only decompress necessary columns to satisfy query

� Data can remain compressed in the buffer cache

� Optimized algorithm avoids or greatly reduces

overhead of decompression during queries

� Built on HCC technology

� Compression algorithm optimized for query performance

� Reduces storage and I/O payload requirements

� Optimal workload characteristics for Warehouse

Compression

� Data loaded with Direct Load operations

� Scan oriented access

Warehouse Compression

Daniel A. Morgan

� Scan oriented access

� Minimal update activity

Optimized for Query Performance

� Built on HCC technology

� Compression algorithm optimized for maximum storage

savings

� Benefits applications with data retention requirements

� Best approach for ILM and data archival

� Minimum storage footprint

� No need to move data to tape or less expensive disks

Archival Compression

Daniel A. Morgan

� No need to move data to tape or less expensive disks

� Data is always online and always accessible

� Run queries against historical data (without recovering from tape)

� Update historical data

� Supports schema evolution (add/drop columns)

Optimized for Space Utilization

� Optimal workload characteristics for Online

Archival Compression

� Any application (OLTP, Data Warehouse)

� Cold or Historical Data

� Data loaded with Direct Load operations

� Minimal access and update requirements

� 15x average storage savings

Online Archival Compression

Daniel A. Morgan

� 1 TB Database compresses to 67 GB

� Keep historical data online forever

� Up to 40x savings seen on production customer data

� OLTP Applications

� Table Partitioning

� Heavily accessed data

� Partitions using OLTP Table Compression

� Cold or historical data

� Partitions using Online Archival Compression

� Data Warehouses

� Table Partitioning

Compression & Partitioning

Daniel A. Morgan

� Table Partitioning

� Heavily accessed data

� Partitions using Warehouse Compression

� Cold or historical data

� Partitions using Online Archival Compression

� Fully supported with…

� B-Tree, Bitmap Indexes, Text indexes

� Materialized Views

� Exadata Server and Cells

� Partitioning

� Parallel Query, PDML, PDDL

� Schema Evolution support, online, metadata-only
add/drop columns

Business as Usual

Daniel A. Morgan

add/drop columns

� Data Guard Physical Standby Support

� Will be supported in a future release

� Logical Standby

� Streams

� When a row is updated

� It is automatically migrated to OLTP Table Compression

� Table size will increase moderately

� All rows in the compression unit are locked

� When tables are queried

� Table scans are faster due to less I/O

� Index lookups are usually slower

Things to Consider …

Daniel A. Morgan

� Need to decompress the compression unit to read entire row

REPORT_TABLE_TEMP

RA_CUSTOMER_LINES_ALL

RA_CUST_GL_DIST_ALL

OKS_K_LINES_TL

OE_ORDER_LINES_ALL

HZ_PARAM_TAB

GL_IMPORT_REFERENCES

GL_BALANCES

Oracle Production E-Business Suite Data

Daniel A. Morgan

0 5 10 15 20 25 30 35 40 45 50

GL_BALANCES

FND_DOCUMENTS_TL

FND_CONCURRENT_ARCH

CN_COMMISSION_LINES_ALL

AP_INVOICE_DISTRI_ALL

AP_AE_LINES_ALL

Archive Compression 8x to 48x - Reduction Average 20x

Big Banks achieved 30X average, Major Telcos 9X average

Size Reduction By Table

HCC's Performance Characteristics

GB/s Physical 4 GFC
HBAs

EHCC
Reinflated Data

Flow (GB/s)

Required Cores
for "Primary
Processing

Generic System * 4 10 40 6.8

Database Machine 21 (disk)

50 (flash)

N/A

N/A

210

500

35.7

85

Daniel A. Morgan

� Division of work: Sun Oracle Database Machine has 112

processor cores for decompression and filtration

� A hypothetical equivalent non-Exadata system would need

on the order of 10 cluster nodes just for decompression

and filtration if provisioned 21 GB/s I/O

* Hypothetical as HCC is an Exadata Feature

Smart Scans of Columnar Compressed Tables

Oracle
Database Grid

What were my
sales yesterday Exadata

Storage Grid

Select
sum(sales)

where
Date=’24-Sept’

Extract Sales
and Date

columns only

CC Disk Chunk

Daniel A. Morgan

SUM

Date=’24-Sept’
…

columns only

Run
Predicate on
Date column

Prune Sales
Column

Vector with
qualifying

rows

� DBMS_COMPRESSION built-in package

� GET_COMPRESSION_RATIO
Returns the possible compression ratio for an
uncompressed table or materialized view and estimates
achievable compression

� GET_COMPRESSION_TYPE
Inspects data and reports what compression type is in
use by row

New Compression Advisor

Daniel A. Morgan

� Enterprise Manager Segment Advisor

� Estimates OLTP Table Compression automatically

� Advises tables that will benefit from OLTP Compression

GET_COMPRESSION_RATIO

CREATE TABLE comp_test1 AS

SELECT * FROM dba_objects;

set serveroutput on

DECLARE

blkcnt_comp PLS_INTEGER;

blkcnt_uncm PLS_INTEGER;

row_comp PLS_INTEGER;

row_uncm PLS_INTEGER;

comp_ratio PLS_INTEGER;

comp_type VARCHAR2(30);

BEGIN

dbms_compression.get_compression_ratio('UWDATA', 'UWCLASS', 'COMP_TEST1', NULL,

dbms_compression.comp_for_oltp, blkcnt_cmp, blkcnt_uncmp, row_comp, row_uncm,

ownertablespace table name partition

Daniel A. Morgan

dbms_compression.comp_for_oltp, blkcnt_cmp, blkcnt_uncmp, row_comp, row_uncm,

comp_ratio, comp_type);

dbms_output.put_line('Block Count Compressed: ' || TO_CHAR(blkcnt_comp));

dbms_output.put_line('Block Count UnCompressed: ' || TO_CHAR(blkcnt_uncm));

dbms_output.put_line('Row Count Compressed: ' || TO_CHAR(row_comp));

dbms_output.put_line('Row Count UnCompressed: ' || TO_CHAR(row_uncm));

dbms_output.put_line('Block Count Compressed: ' || TO_CHAR(comp_ratio));

dbms_output.put_line('Compression Type: ' || comp_type;

END;

/

GET_COMPRESSION_TYPE

CREATE TABLE comp_test2

COMPRESS FOR OLTP AS

SELECT * FROM dba_objects;

set serveroutput on

DECLARE

rid ROWID;

n NUMBER;

BEGIN

SELECT MAX(rowid)

INTO rid

FROM comp_test2;

n := dbms_compression.get_compression_type(USER, 'COMP_TEST2', rid);

Daniel A. Morgan

n := dbms_compression.get_compression_type(USER, 'COMP_TEST2', rid);

dbms_output.put_line(n);

END;

/

owner table name rowid

Summary

� If you can move to Exadata V2 … you will better

serve your customers

� If you can not then don't rely a single technology

… leverage them in combination

� ASM

� Real Application Clusters

� Advanced Compression

Daniel A. Morgan

� Partitioning

We did not come here to fear the future

Questions

Daniel A. Morgan

damorgan@u.washington.edu

demo code: www.morganslibrary.org

Thank you.

