
How to Read and Interpret an
Explain Plan

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

NZOUG Webinary
June 25, 2010

Daniel A. Morgan

� Oracle ACE Director

� University of Washington Oracle Instructor for 10 years

� Morgan of Morgan’s Library on the web
� www.morganslibrary.org

� Member UKOUG and Oracle Applications User Group

� Conference Speaker
� OpenWorld, Collaborate,

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

� OpenWorld, Collaborate,
Kaleidoscope, Canada, Chile,
Denmark, Estonia, Finland,
Germany, Japan, New Zealand,
Norway, Sweden, UK & US

� Beta tester for Oracle
and TimesTen Databases

Syllabus

� Explain Plan Explained?

� Creating Explain Plans

� Reading and Interpreting Explain Plans

� Some Final Thoughts (if time permits)

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

Discussion

Explain Plan Explained

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

What is an Explain Plan

� When a SQL statement being explained the statement
is not run

� The optimizer chooses an execution plan

� The plan information is made visible in a global
temporary table named PLAN$ usually access via the
synonym PLAN_TABLE

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

Optimizer

� Rule Based Optimizer (RBO)

� 14 rules that only apply to version 7 object types

� Cost Based Optimizer (CBO)
� Introduced in Oracle 7

� Initially terrible, that began changing significantly in 8i

� The CBO has been the best choice since 9.2.0.4

� The better the information provided the optimizer the better
its choices (most of the time)

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

its choices (most of the time)

� What is true in one version of the optimizer likely is
not be true in another. Good 9i code may be bad 10g
code. Good 10g code may not perform as expected in
11g.

The RBO

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

The CBO

� Artificial intelligence uses information about your
data to calculate the best access path

� Statistics must be collected using DBMS_STATS

� How do you determine if statistics are current?

CREATE TABLE demo AS SELECT * FROM dba_tables;

SELECT COUNT(*) FROM demo;

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

SELECT COUNT(*) FROM demo;

SELECT table_name, num_rows, last_analyzed

FROM user_tables

ORDER BY 1;

exec dbms_stats.gather_table_stats(USER, 'DEMO');

SELECT table_name, num_rows, last_analyzed

FROM user_tables

ORDER BY 1;

Demo

Optimizer Compatibility

SQL> set serveroutput on

SQL> DECLARE

2 ver VARCHAR2(30);

3 compat VARCHAR2(30);

4 BEGIN

5 dbms_utility.db_version(ver, compat);

6 dbms_output.put_line('Version: ' || ver ||' compatible: ' || compat);

7 END;

8 /

Version: 11.1.0.7.0 Compatible: 10.2.0.4.0

PL/SQL procedure successfully completed.

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

This server is not taking advantage of 11.1.0.7 optimizer enhancements

I have seen this with many customers. It is usually the result of an
in-place upgrade or patch. The result is that the production server
may behave differently from the development and test servers.

Tuning Methodology

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

Discussion

Creating Explain Plans

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

Explain Plan Creation

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

SELECT srvr_id

FROM serv_inst;

Demo

EXPLAIN PLAN

SET STATEMENT_ID = 'abc' FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

Legacy Explain Plan Report Creation

� Uses a recursive query that selects fixed columns
from the plan table

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

FROM serv_inst;

SELECT LPAD(' ',2*(level-1)) || operation || ' ' || options ||' ' || object_name

|| ' ' || DECODE(id,0,'Cost = ' || position) QUERY_OUTPUT

FROM plan_table

START WITH id = 0

AND statement_id = 'abc'

CONNECT BY PRIOR id = parent_id

AND statement_id = 'abc';

Demo

Contemporary Explain Plan Report Creation

� Uses a pipelined table function built into the
DBMS_XPLAN built-in package to dynamically
display plan information

EXPLAIN PLAN

SET STATEMENT_ID = 'abc' FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

SELECT srvr_id

FROM serv_inst;

SELECT * FROM TABLE(dbms_xplan.display);

Demo

SELECT LPAD(' ', 2*(level-1)) || operation || ' ' ||

options ||' ' || object_name || ' ' ||

DECODE(id,0,'Cost = ' || position) QUERY_OUTPUT

FROM plan_table

START WITH id = 0

AND statement_id = 'abc'

CONNECT BY PRIOR id = parent_id

AND statement_id = 'abc';

Output an Explain Plan

The old method (pre-9i):

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

SELECT * FROM TABLE(dbms_xplan.display);

CREATE OR REPLACE VIEW xplan AS

SELECT * FROM TABLE(dbms_xplan.display);

The current method (9i or above):

Discussion

Reading and Interpreting Explain Plans

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

The SQL challenge ... find the best way to return values present in two different tables

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

SELECT srvr_id

FROM servers

WHERE srvr_id IN (

SELECT srvr_id

FROM serv_inst);

SELECT srvr_id

FROM servers s

The SQL Challenge

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

SELECT DISTINCT s.srvr_id

FROM servers s, serv_inst i

WHERE s.srvr_id = i.srvr_id;

FROM servers s

WHERE EXISTS (

SELECT srvr_id

FROM serv_inst i

WHERE s.srvr_id = i.srvr_id);

The SQL Challenge

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

SELECT srvr_id

FROM servers

WHERE srvr_id IN (

SELECT srvr_id

FROM serv_inst);

SELECT srvr_id

FROM servers s

The SQL challenge ... find the best way to return values present in two different tables

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

SELECT DISTINCT s.srvr_id

FROM servers s, serv_inst i

WHERE s.srvr_id = i.srvr_id;

FROM servers s

WHERE EXISTS (

SELECT srvr_id

FROM serv_inst i

WHERE s.srvr_id = i.srvr_id);

The SQL Challenge

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

SELECT srvr_id

FROM servers

WHERE srvr_id IN (

SELECT srvr_id

FROM serv_inst);

SELECT srvr_id

FROM servers s

The SQL challenge ... find the best way to return values present in two different tables

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

SELECT DISTINCT s.srvr_id

FROM servers s, serv_inst i

WHERE s.srvr_id = i.srvr_id;

FROM servers s

WHERE EXISTS (

SELECT srvr_id

FROM serv_inst i

WHERE s.srvr_id = i.srvr_id);

Demo

And there are more ways that range from the sublime

SELECT srvr_id

FROM servers

WHERE srvr_id IN (

SELECT i.srvr_id

FROM serv_inst i, servers s

WHERE i.srvr_id = s.srvr_id);

SELECT DISTINCT s.srvr_id

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

SELECT DISTINCT s.srvr_id

FROM servers s, serv_inst i

WHERE s.srvr_id(+) = i.srvr_id;

WITH q AS (

SELECT DISTINCT s.srvr_id

FROM servers s, serv_inst i

WHERE s.srvr_id = i.srvr_id)

SELECT * FROM q;

to the ridiculous

SELECT DISTINCT srvr_id

FROM servers

WHERE srvr_id NOT IN (

SELECT srvr_id

FROM servers

MINUS

SELECT srvr_id

FROM serv_inst);

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

SELECT srvr_id

FROM (

SELECT srvr_id, SUM(cnt) SUMCNT

FROM (

SELECT DISTINCT srvr_id, 1 AS CNT

FROM servers

UNION ALL

SELECT DISTINCT srvr_id, 1

FROM serv_inst)

GROUP BY srvr_id)

WHERE sumcnt = 2;

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers s

WHERE EXISTS (

SELECT srvr_id

FROM serv_inst i

WHERE s.srvr_id = i.srvr_id);

SELECT * FROM TABLE(dbms_xplan.display);

Create Explain Plan

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

Demo

TOAD Plans

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | TQ |IN-OUT| PQ Distrib |

--

| 0 | SELECT STATEMENT | | 107 | 2782 | 3 (34)| 00:00:01 | | | |

| 1 | PX COORDINATOR | | | | | | | | |

| 2 | PX SEND QC (RANDOM) | :TQ10001 | 107 | 2782 | 3 (34)| 00:00:01 | Q1,01 | P->S | QC (|

| 3 | HASH GROUP BY | | 107 | 2782 | 3 (34)| 00:00:01 | Q1,01 | PCWP | |

| 4 | PX RECEIVE | | 107 | 2782 | 3 (34)| 00:00:01 | Q1,01 | PCWP | |

| 5 | PX SEND HASH | :TQ10000 | 107 | 2782 | 3 (34)| 00:00:01 | Q1,00 | P->P | HASH |

| 6 | HASH GROUP BY | | 107 | 2782 | 3 (34)| 00:00:01 | Q1,00 | PCWP | |

| 7 | PX BLOCK ITERATOR | | 107 | 2782 | 2 (0)| 00:00:01 | Q1,00 | PCWC | |

| 8 | TABLE ACCESS FULL| EMP2 | 107 | 2782 | 2 (0)| 00:00:01 | Q1,00 | PCWP | |

--

Note

- dynamic sampling used for this statement

21 3 4

TOAD Plans

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

- dynamic sampling used for this statement

1. Rows (Cardinality) are wrong

2. Bytes values are wrong

3. CPU% of cost not reported

4. Time not reported

5. Dynamic sampling not reported

1. ID

2. Operation

3. Name

4. Cost

5. IN - OUT

Correct Error / Missing

5

TOAD Plans

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 98128 | 12M| | 3435 (1)| 00:00:42 |

| 1 | SORT ORDER BY | | 98128 | 12M| 25M| 3435 (1)| 00:00:42 |

| 2 | TABLE ACCESS FULL| SOURCE$ | 98128 | 12M| | 577 (2)| 00:00:07 |

--

1 2 3

TOAD Plans

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

1. Missing swap to TEMP tablespace

2. CPU% of cost not reported

3. Time not reported

1. Operation

2. Name

3. Rows

4. Bytes

5. Cost

Correct Error / Missing

Use DBMS_XPLAN Because

� Always current for the database version

� Patched when the Oracle database is patched

� Upgraded when the Oracle database is upgraded

� Always understands all Oracle data types

� Always accurately reflect what the optimizer is thinking

� Nothing to install or maintain on the client

� Free (in all Oracle databases)

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

� Free (in all Oracle databases)

An Explain Plan Report

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

How to read an Explain Plan Report

� Begin reading with the line most indented to the right

� If two lines are indented equally the top line is normally
executed first

� Sum costs with similar indents in the indent group

� Use the CPU percentage to determine the portion of
the cost that is CPU

� (Cost - CPU% of Cost) = Disk I/O

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

� (Cost - CPU% of Cost) = Disk I/O

Reading an Explain Plan Report

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

1. Start with the most indented: Read 999 rows, ~13KB from the SERV_INST table's primary key index

2. Since there is no CPU percentage the cost indicates it will read 3 blocks

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

Reading an Explain Plan Report

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

3. Sort for the query of the PK_SERV_INST index for unique values

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

Reading an Explain Plan Report

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

4. Read one row, 13 bytes from the SERVER table's primary key index: The cost is negligible

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

Reading an Explain Plan Report

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

5. Use a NESTED LOOP to join the results of the two index queries

6. The cost after this operation will be 4 of which 25% is CPU (3+1=4)

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

SQL> EXPLAIN PLAN FOR

2 SELECT srvr_id

3 FROM servers s

4 WHERE EXISTS (

5 SELECT srvr_id

6 FROM serv_inst i

7 WHERE s.srvr_id = i.srvr_id);

Explained.

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2840037858

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

Reading an Explain Plan Report

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

7. The result returned to the end-user will be 11 rows (286 bytes)

| 0 | SELECT STATEMENT | | 11 | 286 | 4 (25)| 00:00:01 |

| 1 | NESTED LOOPS | | 11 | 286 | 4 (25)| 00:00:01 |

| 2 | SORT UNIQUE | | 999 | 12987 | 3 (0)| 00:00:01 |

| 3 | INDEX FAST FULL SCAN| PK_SERV_INST | 999 | 12987 | 3 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

Predicate Information (identified by operation id):

4 - access("S"."SRVR_ID"="I"."SRVR_ID")

Note

- dynamic sampling used for this statement

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

A Slightly More Complex Example

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

1. Read 141 rows, about 0.5K of disk, which is 1 block

2. Sort the query result for unique values

A Slightly More Complex Example

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

3. Read 999 rows, about 4K of disk, which is 3 blocks

4. Sort the query result for unique values

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

A Slightly More Complex Example

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

5. Subtract the result of the IX_SERV_INST query from the result of the PK_SERVERS query

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

A Slightly More Complex Example

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

6. And materialize the result of the subtraction as a view

7. The cost up to now has been 4 (3+1). Now the cost is 6 of which 34% (2) is CPU

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

A Slightly More Complex Example

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

8. Perform a second full scan of the PK_SERVERS index

9. The cost had been 6 we just added one (0% is CPU so it is disk i/o) making the total 7

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

A Slightly More Complex Example

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

10. Join the results in the view with the results of the index read

11. The cost has gone from 7 (6+1) to 8 of which 38%, or 3, is CPU

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

A Slightly More Complex Example

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

12. Use a hashing algorithm to collect a set of unique values for the result set

13. The cost has gone from 8 to 9 of which 45%, or 4, is CPU

--

| Id | Operation | Name | Rows | Bytes |Cost(%CPU)|

--

| 0 | SELECT STATEMENT | | 1 | 17 | 9 (45)|

| 1 | HASH UNIQUE | | 1 | 17 | 9 (45)|

|* 2 | HASH JOIN ANTI | | 140 | 2380 | 8 (38)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | VIEW | VW_NSO_1 | 141 | 1833 | 6 (34)|

| 5 | MINUS | | | | |

| 6 | SORT UNIQUE | | 141 | 564 | |

| 7 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 8 | SORT UNIQUE | | 999 | 3996 | |

A Slightly More Complex Example

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 8 | SORT UNIQUE | | 999 | 3996 | |

| 9 | INDEX FAST FULL SCAN | IX_SERV_INST | 999 | 3996 | 3 (0)|

--

14. The result returned to the end-user will be 1 row (17 bytes)

15. The total cost is 9 of which 45% (4) is CPU. The balance (5) is disk i/o.

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

Plans With Errors

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

Can you find the error?

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

Reading an Explain Plan

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

1. Read 999 rows, ~4K from the SERV_INST table's index IX_SERV_INST: The cost is 3

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

Reading an Explain Plan

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

2. Sort the IX_SERV_INST index entries

3. The additional cost is 1 (3+1=4) and 25% of the cost of 4 is CPU (4 x 0.25 = 1): The math works

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

Reading an Explain Plan

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

4. Read 141 rows, 0.5K, from the primary key of the SERVERS table: The cost is 1

5. This line is indented so it is not added, directly, to the cost of operations 4 and 5

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

Reading an Explain Plan

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

6. A SORT UNIQUE NOSORT is used to remove potential duplicate rows

7. The additional cost is 1 (1+1=2) and 50% of the cost of 2 is CPU (2 x 0.50 = 1): The math works again

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

Reading an Explain Plan

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

8. Perform an intersection of the two result sets

EXPLAIN PLAN FOR

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

Reading an Explain Plan

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

9. Add the two costs (2+4=6): The math works

10. 25% of the 4 is CPU (1) and 50% of the 2 is CPU (1) and (1+1=2). Is 84% of 6 equal to 2?

Explain Plan Demos (if time permits)

� Bitmap Indexes

� Parallel Query

� Partition Pruning

� Temp Space Usage

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

Demo

EXPLAIN PLAN FOR

SELECT *

FROM serv_inst

WHERE location_code = 30386

OR ws_id BETWEEN 326 AND 333;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 2 | 148 | 3 (0)| 00:00:01 |

| 1 | CONCATENATION | | | | | |

| 2 | TABLE ACCESS BY INDEX ROWID | SERV_INST | 1 | 74 | 1 (0)| 00:00:01 |

| 3 | BITMAP CONVERSION TO ROWIDS| | | | | |

|* 4 | BITMAP INDEX RANGE SCAN | BIX_SERV_INST_WS_ID | | | | |

|* 5 | TABLE ACCESS BY INDEX ROWID | SERV_INST | 1 | 74 | 1 (0)| 00:00:01 |

| 6 | BITMAP CONVERSION TO ROWIDS| | | | | |

|* 7 | BITMAP INDEX SINGLE VALUE | BIX_SERV_INST_LOCATION_CODE | | | | |

Bitmap Indexes

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

Predicate Information (identified by operation id):

4 - access("WS_ID">=326 AND "WS_ID"<=333)

5 - filter(LNNVL("WS_ID">=326) OR LNNVL("WS_ID"<=333))

7 - access("LOCATION_CODE"=30386)

Predicate Information (identified by operation id):

4 - access("WS_ID">=326 AND "WS_ID"<=333)

5 - filter(LNNVL("WS_ID">=326) OR LNNVL("WS_ID"<=333))

7 - access("LOCATION_CODE"=30386)

Query Rewrite Example

LNNVL: Evaluates a condition when one or both operands of the condition may be null

SQL> EXPLAIN PLAN FOR

2 SELECT SUM(salary)

3 FROM emp2

4 GROUP BY department_id;

Explained.

SQL> SELECT plan_table_output FROM table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

Plan hash value: 3939201228

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | TQ |IN-OUT| PQ Distrib |

---|

| 0 | SELECT STATEMENT | | 107 | 2782 | 3 (34)| 00:00:01 | | | |

| 1 | PX COORDINATOR | | | | | | | | |

| 2 | PX SEND QC (RANDOM) | :TQ10001 | 107 | 2782 | 3 (34)| 00:00:01 | Q1,01 | P->S | QC (|

| 3 | HASH GROUP BY | | 107 | 2782 | 3 (34)| 00:00:01 | Q1,01 | PCWP | |

| 4 | PX RECEIVE | | 107 | 2782 | 3 (34)| 00:00:01 | Q1,01 | PCWP | |

| 5 | PX SEND HASH | :TQ10000 | 107 | 2782 | 3 (34)| 00:00:01 | Q1,00 | P->P | HASH |

Parallel Query (PQ)

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 5 | PX SEND HASH | :TQ10000 | 107 | 2782 | 3 (34)| 00:00:01 | Q1,00 | P->P | HASH |

| 6 | HASH GROUP BY | | 107 | 2782 | 3 (34)| 00:00:01 | Q1,00 | PCWP | |

| 7 | PX BLOCK ITERATOR | | 107 | 2782 | 2 (0)| 00:00:01 | Q1,00 | PCWC | |

| 8 | TABLE ACCESS FULL| EMP2 | 107 | 2782 | 2 (0)| 00:00:01 | Q1,00 | PCWP | |

--

Note

- dynamic sampling used for this statement

explain plan for

select * from part_zip where state = 'CA';

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

--

| 0 | SELECT STATEMENT | | 3 | 72 | 2 (0)| 00:00:01 | | |

| 1 | PARTITION HASH SINGLE| | 3 | 72 | 2 (0)| 00:00:01 | 1 | 1 |

|* 2 | TABLE ACCESS FULL | PART_ZIP | 3 | 72 | 2 (0)| 00:00:01 | 1 | 1 |

--

explain plan for

select * from part_zip where state = 'HI';

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

--

| 0 | SELECT STATEMENT | | 3 | 72 | 2 (0)| 00:00:01 | | |

| 1 | PARTITION HASH SINGLE| | 3 | 72 | 2 (0)| 00:00:01 | 2 | 2 |

Partition Pruning

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| 1 | PARTITION HASH SINGLE| | 3 | 72 | 2 (0)| 00:00:01 | 2 | 2 |

|* 2 | TABLE ACCESS FULL | PART_ZIP | 3 | 72 | 2 (0)| 00:00:01 | 2 | 2 |

--

explain plan for

select * from part_zip where zipcode LIKE '%5%';

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

--

| 0 | SELECT STATEMENT | | 2 | 48 | 2 (0)| 00:00:01 | | |

| 1 | PARTITION HASH ALL | | 2 | 48 | 2 (0)| 00:00:01 | 1 | 3 |

|* 2 | TABLE ACCESS FULL | PART_ZIP | 2 | 48 | 2 (0)| 00:00:01 | 1 | 3 |

--

SQL> SELECT * FROM TABLE(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

Plan hash value: 995087943

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 98128 | 12M| | 3435 (1)| 00:00:42 |

| 1 | SORT ORDER BY | | 98128 | 12M| 25M| 3435 (1)| 00:00:42 |

| 2 | TABLE ACCESS FULL| SOURCE$ | 98128 | 12M| | 577 (2)| 00:00:07 |

--

Temp Space Usage

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

Discussion

Final Thoughts

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

Common Issues

� Explain Plans are not everything and not what will
necessarily happen

� You can Explain Plan any DML statement

� Join Syntax Consistency (traditional vs ANSI)

� Missing Joins (Cartesian Products)

� Myth Busting

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

SQL> EXPLAIN PLAN FOR

2 SELECT COUNT(*)

3 FROM parent p, child c

4 WHERE p.parent_id = c.parent_id;

SQL> select * From table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

Plan hash value: 3584092213

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 10 | | 3163 (5)| 00:00:38 |

| 1 | SORT AGGREGATE | | 1 | 10 | | | |

|* 2 | HASH JOIN | | 1500K| 14M| 8312K| 3163 (5)| 00:00:38 |

| 3 | TABLE ACCESS FULL| PARENT | 500K| 2442K| | 380 (4)| 00:00:05 |

| 4 | TABLE ACCESS FULL| CHILD | 1500K| 7324K| | 1106 (5)| 00:00:14 |

--

This Is One Way To Look At It

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

SQL> EXPLAIN PLAN FOR

2 SELECT COUNT(*)

3 FROM parent p, child c

4 WHERE p.parent_id = c.parent_id

5 AND c.birth_date is NOT NULL;

SQL> select * From table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

Plan hash value: 3584092213

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 16 | | 3037 (5)| 00:00:37 |

| 1 | SORT AGGREGATE | | 1 | 16 | | | |

|* 2 | HASH JOIN | | 999K| 15M| 8312K| 3037 (5)| 00:00:37 |

| 3 | TABLE ACCESS FULL| PARENT | 500K| 2442K| | 380 (4)| 00:00:05 |

|* 4 | TABLE ACCESS FULL| CHILD | 999K| 10M| | 1116 (6)| 00:00:14 |

--

SQL> set timing on

SQL> SELECT COUNT(*)

2 FROM parent p, child c

3 WHERE p.parent_id = c.parent_id;

COUNT(*)

1500000

Elapsed: 00:00:00.59

SQL> SELECT COUNT(*)

2 FROM parent p, child c

3 WHERE p.parent_id = c.parent_id

4 AND birth_date is NOT NULL;

This Is Another

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

4 AND birth_date is NOT NULL;

COUNT(*)

1000000

Elapsed: 00:00:00.53

They are both important

Seeing What's Real

� DBMS_XPLAN.DISPLAY_CURSOR

SELECT /* XPLAN_CURSOR */ DISTINCT s.srvr_id

FROM servers s, serv_inst I

WHERE s.srvr_id = i.srvr_id;

SELECT sql_id

FROM gv$sql

WHERE sql_text LIKE '%XPLAN_CURSOR%';

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

WHERE sql_text LIKE '%XPLAN_CURSOR%';

SELECT * FROM

TABLE(dbms_xplan.display_cursor('cpm9ss48qd32f'));

DBMS_XPLAN.DISPLAY_CURSOR

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

SQL> desc v$sql

Name Null? Type

--- -------- -------------

SQL_TEXT VARCHAR2(1000

SQL_FULLTEXT CLOB

SQL_ID VARCHAR2(13)

SHARABLE_MEM NUMBER

PERSISTENT_MEM NUMBER

RUNTIME_MEM NUMBER

SORTS NUMBER

FETCHES NUMBER

PX_SERVERS_EXECUTIONS NUMBER

PARSE_CALLS NUMBER

DISK_READS NUMBER

DIRECT_WRITES NUMBER

BUFFER_GETS NUMBER

APPLICATION_WAIT_TIME NUMBER

CONCURRENCY_WAIT_TIME NUMBER

CLUSTER_WAIT_TIME NUMBER

USER_IO_WAIT_TIME NUMBER

V$SQL

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

USER_IO_WAIT_TIME NUMBER

PLSQL_EXEC_TIME NUMBER

JAVA_EXEC_TIME NUMBER

ROWS_PROCESSED NUMBER

COMMAND_TYPE NUMBER

OPTIMIZER_MODE VARCHAR2(10)

OPTIMIZER_COST NUMBER

OPTIMIZER_ENV RAW(2000)

PLAN_HASH_VALUE NUMBER

CHILD_NUMBER NUMBER

CPU_TIME NUMBER

ELAPSED_TIME NUMBER

IS_BIND_SENSITIVE VARCHAR2(1)

SQL_PROFILE VARCHAR2(64)

LAST_ACTIVE_TIME DATE

BIND_DATA RAW(2000)

IO_INTERCONNECT_BYTES NUMBER

IO_DISK_BYTES NUMBER

Abbreviated column list

SQL> desc v$sql_plan

Name Null? Type

--- -------- --------------

ADDRESS RAW(4)

HASH_VALUE NUMBER

SQL_ID VARCHAR2(13)

PLAN_HASH_VALUE NUMBER

TIMESTAMP DATE

OPERATION VARCHAR2(30)

OPTIMIZER VARCHAR2(20)

ID NUMBER

PARENT_ID NUMBER

DEPTH NUMBER

POSITION NUMBER

SEARCH_COLUMNS NUMBER

COST NUMBER

CARDINALITY NUMBER

BYTES NUMBER

PARTITION_START VARCHAR2(64)

PARTITION_STOP VARCHAR2(64)

V$SQL_PLAN

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

PARTITION_STOP VARCHAR2(64)

CPU_COST NUMBER

IO_COST NUMBER

TEMP_SPACE NUMBER

ACCESS_PREDICATES VARCHAR2(4000)

FILTER_PREDICATES VARCHAR2(4000)

PROJECTION VARCHAR2(4000)

TIME NUMBER

QBLOCK_NAME VARCHAR2(30)

Abbreviated column list

SQL> explain plan for

2 MERGE INTO bonuses b

3 USING (

4 SELECT employee_id, salary, dept_no

5 FROM employee

6 WHERE dept_no =20) e

7 ON (b.employee_id = e.employee_id)

8 WHEN MATCHED THEN

9 UPDATE SET b.bonus = e.salary * 0.1

10 DELETE WHERE (e.salary < 40000)

11 WHEN NOT MATCHED THEN

12 INSERT (b.employee_id, b.bonus)

13 VALUES (e.employee_id, e.salary * 0.05)

14 WHERE (e.salary > 40000);

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

Any DML Statement Can Be Explained

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | MERGE STATEMENT | | 6 | 546 | 17 (6)| 00:00:01 |

| 1 | MERGE | BONUSES | | | | |

| 2 | VIEW | | | | | |

|* 3 | HASH JOIN OUTER | | 6 | 462 | 17 (6)| 00:00:01 |

|* 4 | TABLE ACCESS FULL| EMPLOYEE | 6 | 234 | 8 (0)| 00:00:01 |

| 5 | TABLE ACCESS FULL| BONUSES | 6 | 228 | 8 (0)| 00:00:01 |

INSERT, UPDATE, DELETE, and MERGE

explain plan for

select distinct i.srvr_id

from servers s, serv_inst i

where s.srvr_id = i.srvr_id;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 999 | 25974 | 9 (12)| 00:00:01 |

| 1 | HASH UNIQUE | | 999 | 25974 | 9 (12)| 00:00:01 |

| 2 | NESTED LOOPS | | 999 | 25974 | 8 (0)| 00:00:01 |

| 3 | TABLE ACCESS FULL| SERV_INST | 999 | 12987 | 8 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN| PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

--

explain plan for

select distinct i.srvr_id

from servers s inner join serv_inst i

on s.srvr_id = i.srvr_id;

Any Join Syntax Can Be Used (Traditional or ANSI joins)

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

on s.srvr_id = i.srvr_id;

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 999 | 25974 | 9 (12)| 00:00:01 |

| 1 | HASH UNIQUE | | 999 | 25974 | 9 (12)| 00:00:01 |

| 2 | NESTED LOOPS | | 999 | 25974 | 8 (0)| 00:00:01 |

| 3 | TABLE ACCESS FULL| SERV_INST | 999 | 12987 | 8 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN| PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

--

Produce identical plans
... in all currently supported versions ...

SQL> explain plan for

2 select s.srvr_id

3 from servers s, serv_inst i

4 where s.srvr_id = i.srvr_id;

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 999 | 25974 | 8 (0)| 00:00:01 |

| 1 | NESTED LOOPS | | 999 | 25974 | 8 (0)| 00:00:01 |

| 2 | TABLE ACCESS FULL| SERV_INST | 999 | 12987 | 8 (0)| 00:00:01 |

|* 3 | INDEX UNIQUE SCAN| PK_SERVERS | 1 | 13 | 0 (0)| 00:00:01 |

SQL> explain plan for

2 select s.srvr_id

3 from servers s, serv_inst i;

Beware of Missing Joins

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

3 from servers s, serv_inst i;

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 140K| 1788K| 130 (1)| 00:00:02 |

| 1 | MERGE JOIN CARTESIAN | | 140K| 1788K| 130 (1)| 00:00:02 |

| 2 | INDEX FAST FULL SCAN | PK_SERVERS | 141 | 1833 | 2 (0)| 00:00:01 |

| 3 | BUFFER SORT | | 999 | | 128 (1)| 00:00:02 |

| 4 | BITMAP CONVERSION TO ROWIDS | | 999 | | 1 (0)| 00:00:01 |

| 5 | BITMAP INDEX FAST FULL SCAN| BIX_SERV_INST_WS_ID | | | | |

--

Note the impact of the missing join

Myth Busting

SQL> explain plan for

2 SELECT doc_name

3 FROM t

4 WHERE person_id = 221;

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 216 | 6264 | 64 (4)| 00:00:01 |

|* 1 | TABLE ACCESS FULL| T | 216 | 6264 | 64 (4)| 00:00:01 |

--

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

SQL> explain plan for

2 SELECT /*+ INDEX(t ix_t_person_id) */ doc_name

3 FROM t

4 WHERE person_id = 221;

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 216 | 6264 | 216 (0)| 00:00:03 |

| 1 | TABLE ACCESS BY INDEX ROWID| T | 216 | 6264 | 216 (0)| 00:00:03 |

|* 2 | INDEX RANGE SCAN | IX_T_PERSON_ID | 216 | | 1 (0)| 00:00:01 |

--

� Oracle Technology Network

� http://tahiti.oracle.com

� Morgan of Morgan’s Library on the web
� www.morganslibrary.org

� Tom Kyte
� http://asktom.oracle.com

� Tom's Books

Resources

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

� Tom's Books

� Jonathan Lewis
� http://www.jlcomp.demon.co.uk/faq

� Jonathan's Books

� Cary Millsap
� http://carymillsap.blogspot.com

Questions

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 66 | 264 (2)| 00:00:04 |

| 1 | MERGE JOIN OUTER | | 1 | 66 | 264 (2)| 00:00:04 |

| 2 | MERGE JOIN OUTER | | 1 | 44 | 139 (3)| 00:00:02 |

| 3 | NESTED LOOPS OUTER | | 1 | 22 | 28 (4)| 00:00:01 |

| 4 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 5 | VIEW | | 1 | 22 | 26 (4)| 00:00:01 |

| 6 | VIEW | | 1 | 18 | 26 (4)| 00:00:01 |

|* 7 | FILTER | | | | | |

| 8 | SORT AGGREGATE | | 1 | 80 | | |

|* 9 | HASH JOIN | | 717 | 57360 | 26 (4)| 00:00:01 |

|* 10 | HASH JOIN | | 67 | 4623 | 7 (15)| 00:00:01 |

| 11 | TABLE ACCESS FULL | MKTDRIDAILYRESAVAIL | 17 | 629 | 3 (0)| 00:00:01 |

|* 12 | TABLE ACCESS FULL | MKTDRIHRLYRESAVAIL | 67 | 2144 | 3 (0)| 00:00:01 |

| 13 | TABLE ACCESS FULL | MKTHOUR | 1752 | 19272 | 19 (0)| 00:00:01 |

| 14 | VIEW | | 1 | 22 | 110 (1)| 00:00:02 |

| 15 | VIEW | | 1 | 9 | 110 (1)| 00:00:02 |

|* 16 | FILTER | | | | | |

| 17 | SORT AGGREGATE | | 1 | 19 | | |

| 18 | MERGE JOIN | | 365 | 6935 | 110 (1)| 00:00:02 |

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

Complex Query Plan

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

| 20 | INDEX FULL SCAN | XPKMKTSTUDYMODE | 16 | | 1 (0)| 00:00:01 |

|* 21 | SORT JOIN | | 1318 | 13180 | 106 (1)| 00:00:02 |

|* 22 | TABLE ACCESS FULL | MKTPLAN | 1318 | 13180 | 105 (0)| 00:00:02 |

| 23 | BUFFER SORT | | 1 | 22 | 153 (1)| 00:00:02 |

| 24 | VIEW | | 1 | 22 | 125 (0)| 00:00:02 |

| 25 | VIEW | | 1 | 9 | 125 (0)| 00:00:02 |

|* 26 | FILTER | | | | | |

| 27 | SORT AGGREGATE | | 1 | 54 | | |

|* 28 | HASH JOIN | | 99 | 5346 | 125 (0)| 00:00:02 |

| 29 | NESTED LOOPS | | | | | |

| 30 | NESTED LOOPS | | 81 | 3483 | 109 (0)| 00:00:02 |

| 31 | NESTED LOOPS | | 94 | 2632 | 27 (0)| 00:00:01 |

| 32 | VIEW | | 1 | 9 | 2 (0)| 00:00:01 |

|* 33 | COUNT STOPKEY | | | | | |

| 34 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 35 | TABLE ACCESS BY INDEX ROWID| MKTCASE | 94 | 1786 | 25 (0)| 00:00:01 |

|* 36 | INDEX RANGE SCAN | XFMKTCASE_MKTDAYAPPV2200_U| 94 | | 1 (0)| 00:00:01 |

|* 37 | INDEX UNIQUE SCAN | XPKMKTPLAN | 1 | | 0 (0)| 00:00:01 |

| 38 | TABLE ACCESS BY INDEX ROWID | MKTPLAN | 1 | 15 | 1 (0)| 00:00:01 |

| 39 | INDEX FAST FULL SCAN | XPKMKTCASEDRFORECAST | 4560 | 50160 | 16 (0)| 00:00:01 |

Complex Query Plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 66 | 264 (2)| 00:00:04 |

| 1 | MERGE JOIN OUTER | | 1 | 66 | 264 (2)| 00:00:04 |

| 2 | MERGE JOIN OUTER | | 1 | 44 | 139 (3)| 00:00:02 |

| 3 | NESTED LOOPS OUTER | | 1 | 22 | 28 (4)| 00:00:01 |

| 4 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 5 | VIEW | | 1 | 22 | 26 (4)| 00:00:01 |

| 6 | VIEW | | 1 | 18 | 26 (4)| 00:00:01 |

|* 7 | FILTER | | | | | |

| 8 | SORT AGGREGATE | | 1 | 80 | | |

|* 9 | HASH JOIN | | 717 | 57360 | 26 (4)| 00:00:01 |

|* 10 | HASH JOIN | | 67 | 4623 | 7 (15)| 00:00:01 |

| 11 | TABLE ACCESS FULL | MKTDRIDAILYRESAVAIL | 17 | 629 | 3 (0)| 00:00:01 |

|* 12 | TABLE ACCESS FULL | MKTDRIHRLYRESAVAIL | 67 | 2144 | 3 (0)| 00:00:01 |

| 13 | TABLE ACCESS FULL | MKTHOUR | 1752 | 19272 | 19 (0)| 00:00:01 |

| 14 | VIEW | | 1 | 22 | 110 (1)| 00:00:02 |

| 15 | VIEW | | 1 | 9 | 110 (1)| 00:00:02 |

|* 16 | FILTER | | | | | |

| 17 | SORT AGGREGATE | | 1 | 19 | | |

| 18 | MERGE JOIN | | 365 | 6935 | 110 (1)| 00:00:02 |

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

| 20 | INDEX FULL SCAN | XPKMKTSTUDYMODE | 16 | | 1 (0)| 00:00:01 |

|* 21 | SORT JOIN | | 1318 | 13180 | 106 (1)| 00:00:02 |

|* 22 | TABLE ACCESS FULL | MKTPLAN | 1318 | 13180 | 105 (0)| 00:00:02 |

| 23 | BUFFER SORT | | 1 | 22 | 153 (1)| 00:00:02 |

| 24 | VIEW | | 1 | 22 | 125 (0)| 00:00:02 |

| 25 | VIEW | | 1 | 9 | 125 (0)| 00:00:02 |

|* 26 | FILTER | | | | | |

| 27 | SORT AGGREGATE | | 1 | 54 | | |

|* 28 | HASH JOIN | | 99 | 5346 | 125 (0)| 00:00:02 |

| 29 | NESTED LOOPS | | | | | |

| 30 | NESTED LOOPS | | 81 | 3483 | 109 (0)| 00:00:02 |

| 31 | NESTED LOOPS | | 94 | 2632 | 27 (0)| 00:00:01 |

| 32 | VIEW | | 1 | 9 | 2 (0)| 00:00:01 |

|* 33 | COUNT STOPKEY | | | | | |

| 34 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 35 | TABLE ACCESS BY INDEX ROWID| MKTCASE | 94 | 1786 | 25 (0)| 00:00:01 |

|* 36 | INDEX RANGE SCAN | XFMKTCASE_MKTDAYAPPV2200_U| 94 | | 1 (0)| 00:00:01 |

|* 37 | INDEX UNIQUE SCAN | XPKMKTPLAN | 1 | | 0 (0)| 00:00:01 |

| 38 | TABLE ACCESS BY INDEX ROWID | MKTPLAN | 1 | 15 | 1 (0)| 00:00:01 |

| 39 | INDEX FAST FULL SCAN | XPKMKTCASEDRFORECAST | 4560 | 50160 | 16 (0)| 00:00:01 |

Complex Query Plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 66 | 264 (2)| 00:00:04 |

| 1 | MERGE JOIN OUTER | | 1 | 66 | 264 (2)| 00:00:04 |

| 2 | MERGE JOIN OUTER | | 1 | 44 | 139 (3)| 00:00:02 |

| 3 | NESTED LOOPS OUTER | | 1 | 22 | 28 (4)| 00:00:01 |

| 4 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 5 | VIEW | | 1 | 22 | 26 (4)| 00:00:01 |

| 6 | VIEW | | 1 | 18 | 26 (4)| 00:00:01 |

|* 7 | FILTER | | | | | |

| 8 | SORT AGGREGATE | | 1 | 80 | | |

|* 9 | HASH JOIN | | 717 | 57360 | 26 (4)| 00:00:01 |

|* 10 | HASH JOIN | | 67 | 4623 | 7 (15)| 00:00:01 |

| 11 | TABLE ACCESS FULL | MKTDRIDAILYRESAVAIL | 17 | 629 | 3 (0)| 00:00:01 |

|* 12 | TABLE ACCESS FULL | MKTDRIHRLYRESAVAIL | 67 | 2144 | 3 (0)| 00:00:01 |

| 13 | TABLE ACCESS FULL | MKTHOUR | 1752 | 19272 | 19 (0)| 00:00:01 |

| 14 | VIEW | | 1 | 22 | 110 (1)| 00:00:02 |

| 15 | VIEW | | 1 | 9 | 110 (1)| 00:00:02 |

|* 16 | FILTER | | | | | |

| 17 | SORT AGGREGATE | | 1 | 19 | | |

| 18 | MERGE JOIN | | 365 | 6935 | 110 (1)| 00:00:02 |

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

| 20 | INDEX FULL SCAN | XPKMKTSTUDYMODE | 16 | | 1 (0)| 00:00:01 |

|* 21 | SORT JOIN | | 1318 | 13180 | 106 (1)| 00:00:02 |

|* 22 | TABLE ACCESS FULL | MKTPLAN | 1318 | 13180 | 105 (0)| 00:00:02 |

| 23 | BUFFER SORT | | 1 | 22 | 153 (1)| 00:00:02 |

| 24 | VIEW | | 1 | 22 | 125 (0)| 00:00:02 |

| 25 | VIEW | | 1 | 9 | 125 (0)| 00:00:02 |

|* 26 | FILTER | | | | | |

| 27 | SORT AGGREGATE | | 1 | 54 | | |

|* 28 | HASH JOIN | | 99 | 5346 | 125 (0)| 00:00:02 |

| 29 | NESTED LOOPS | | | | | |

| 30 | NESTED LOOPS | | 81 | 3483 | 109 (0)| 00:00:02 |

| 31 | NESTED LOOPS | | 94 | 2632 | 27 (0)| 00:00:01 |

| 32 | VIEW | | 1 | 9 | 2 (0)| 00:00:01 |

|* 33 | COUNT STOPKEY | | | | | |

| 34 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 35 | TABLE ACCESS BY INDEX ROWID| MKTCASE | 94 | 1786 | 25 (0)| 00:00:01 |

|* 36 | INDEX RANGE SCAN | XFMKTCASE_MKTDAYAPPV2200_U| 94 | | 1 (0)| 00:00:01 |

|* 37 | INDEX UNIQUE SCAN | XPKMKTPLAN | 1 | | 0 (0)| 00:00:01 |

| 38 | TABLE ACCESS BY INDEX ROWID | MKTPLAN | 1 | 15 | 1 (0)| 00:00:01 |

| 39 | INDEX FAST FULL SCAN | XPKMKTCASEDRFORECAST | 4560 | 50160 | 16 (0)| 00:00:01 |

25 + 2 = 27

Complex Query Plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 66 | 264 (2)| 00:00:04 |

| 1 | MERGE JOIN OUTER | | 1 | 66 | 264 (2)| 00:00:04 |

| 2 | MERGE JOIN OUTER | | 1 | 44 | 139 (3)| 00:00:02 |

| 3 | NESTED LOOPS OUTER | | 1 | 22 | 28 (4)| 00:00:01 |

| 4 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 5 | VIEW | | 1 | 22 | 26 (4)| 00:00:01 |

| 6 | VIEW | | 1 | 18 | 26 (4)| 00:00:01 |

|* 7 | FILTER | | | | | |

| 8 | SORT AGGREGATE | | 1 | 80 | | |

|* 9 | HASH JOIN | | 717 | 57360 | 26 (4)| 00:00:01 |

|* 10 | HASH JOIN | | 67 | 4623 | 7 (15)| 00:00:01 |

| 11 | TABLE ACCESS FULL | MKTDRIDAILYRESAVAIL | 17 | 629 | 3 (0)| 00:00:01 |

|* 12 | TABLE ACCESS FULL | MKTDRIHRLYRESAVAIL | 67 | 2144 | 3 (0)| 00:00:01 |

| 13 | TABLE ACCESS FULL | MKTHOUR | 1752 | 19272 | 19 (0)| 00:00:01 |

| 14 | VIEW | | 1 | 22 | 110 (1)| 00:00:02 |

| 15 | VIEW | | 1 | 9 | 110 (1)| 00:00:02 |

|* 16 | FILTER | | | | | |

| 17 | SORT AGGREGATE | | 1 | 19 | | |

| 18 | MERGE JOIN | | 365 | 6935 | 110 (1)| 00:00:02 |

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

| 20 | INDEX FULL SCAN | XPKMKTSTUDYMODE | 16 | | 1 (0)| 00:00:01 |

|* 21 | SORT JOIN | | 1318 | 13180 | 106 (1)| 00:00:02 |

|* 22 | TABLE ACCESS FULL | MKTPLAN | 1318 | 13180 | 105 (0)| 00:00:02 |

| 23 | BUFFER SORT | | 1 | 22 | 153 (1)| 00:00:02 |

| 24 | VIEW | | 1 | 22 | 125 (0)| 00:00:02 |

| 25 | VIEW | | 1 | 9 | 125 (0)| 00:00:02 |

|* 26 | FILTER | | | | | |

| 27 | SORT AGGREGATE | | 1 | 54 | | |

|* 28 | HASH JOIN | | 99 | 5346 | 125 (0)| 00:00:02 |

| 29 | NESTED LOOPS | | | | | |

| 30 | NESTED LOOPS | | 81 | 3483 | 109 (0)| 00:00:02 |

| 31 | NESTED LOOPS | | 94 | 2632 | 27 (0)| 00:00:01 |

| 32 | VIEW | | 1 | 9 | 2 (0)| 00:00:01 |

|* 33 | COUNT STOPKEY | | | | | |

| 34 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 35 | TABLE ACCESS BY INDEX ROWID| MKTCASE | 94 | 1786 | 25 (0)| 00:00:01 |

|* 36 | INDEX RANGE SCAN | XFMKTCASE_MKTDAYAPPV2200_U| 94 | | 1 (0)| 00:00:01 |

|* 37 | INDEX UNIQUE SCAN | XPKMKTPLAN | 1 | | 0 (0)| 00:00:01 |

| 38 | TABLE ACCESS BY INDEX ROWID | MKTPLAN | 1 | 15 | 1 (0)| 00:00:01 |

| 39 | INDEX FAST FULL SCAN | XPKMKTCASEDRFORECAST | 4560 | 50160 | 16 (0)| 00:00:01 |

16 + 109 = 125

Complex Query Plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 66 | 264 (2)| 00:00:04 |

| 1 | MERGE JOIN OUTER | | 1 | 66 | 264 (2)| 00:00:04 |

| 2 | MERGE JOIN OUTER | | 1 | 44 | 139 (3)| 00:00:02 |

| 3 | NESTED LOOPS OUTER | | 1 | 22 | 28 (4)| 00:00:01 |

| 4 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 5 | VIEW | | 1 | 22 | 26 (4)| 00:00:01 |

| 6 | VIEW | | 1 | 18 | 26 (4)| 00:00:01 |

|* 7 | FILTER | | | | | |

| 8 | SORT AGGREGATE | | 1 | 80 | | |

|* 9 | HASH JOIN | | 717 | 57360 | 26 (4)| 00:00:01 |

|* 10 | HASH JOIN | | 67 | 4623 | 7 (15)| 00:00:01 |

| 11 | TABLE ACCESS FULL | MKTDRIDAILYRESAVAIL | 17 | 629 | 3 (0)| 00:00:01 |

|* 12 | TABLE ACCESS FULL | MKTDRIHRLYRESAVAIL | 67 | 2144 | 3 (0)| 00:00:01 |

| 13 | TABLE ACCESS FULL | MKTHOUR | 1752 | 19272 | 19 (0)| 00:00:01 |

| 14 | VIEW | | 1 | 22 | 110 (1)| 00:00:02 |

| 15 | VIEW | | 1 | 9 | 110 (1)| 00:00:02 |

|* 16 | FILTER | | | | | |

| 17 | SORT AGGREGATE | | 1 | 19 | | |

| 18 | MERGE JOIN | | 365 | 6935 | 110 (1)| 00:00:02 |

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

| 20 | INDEX FULL SCAN | XPKMKTSTUDYMODE | 16 | | 1 (0)| 00:00:01 |

|* 21 | SORT JOIN | | 1318 | 13180 | 106 (1)| 00:00:02 |

|* 22 | TABLE ACCESS FULL | MKTPLAN | 1318 | 13180 | 105 (0)| 00:00:02 |

| 23 | BUFFER SORT | | 1 | 22 | 153 (1)| 00:00:02 |

| 24 | VIEW | | 1 | 22 | 125 (0)| 00:00:02 |

| 25 | VIEW | | 1 | 9 | 125 (0)| 00:00:02 |

|* 26 | FILTER | | | | | |

| 27 | SORT AGGREGATE | | 1 | 54 | | |

|* 28 | HASH JOIN | | 99 | 5346 | 125 (0)| 00:00:02 |

| 29 | NESTED LOOPS | | | | | |

| 30 | NESTED LOOPS | | 81 | 3483 | 109 (0)| 00:00:02 |

| 31 | NESTED LOOPS | | 94 | 2632 | 27 (0)| 00:00:01 |

| 32 | VIEW | | 1 | 9 | 2 (0)| 00:00:01 |

|* 33 | COUNT STOPKEY | | | | | |

| 34 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 35 | TABLE ACCESS BY INDEX ROWID| MKTCASE | 94 | 1786 | 25 (0)| 00:00:01 |

|* 36 | INDEX RANGE SCAN | XFMKTCASE_MKTDAYAPPV2200_U| 94 | | 1 (0)| 00:00:01 |

|* 37 | INDEX UNIQUE SCAN | XPKMKTPLAN | 1 | | 0 (0)| 00:00:01 |

| 38 | TABLE ACCESS BY INDEX ROWID | MKTPLAN | 1 | 15 | 1 (0)| 00:00:01 |

| 39 | INDEX FAST FULL SCAN | XPKMKTCASEDRFORECAST | 4560 | 50160 | 16 (0)| 00:00:01 |

Complex Query Plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 66 | 264 (2)| 00:00:04 |

| 1 | MERGE JOIN OUTER | | 1 | 66 | 264 (2)| 00:00:04 |

| 2 | MERGE JOIN OUTER | | 1 | 44 | 139 (3)| 00:00:02 |

| 3 | NESTED LOOPS OUTER | | 1 | 22 | 28 (4)| 00:00:01 |

| 4 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 5 | VIEW | | 1 | 22 | 26 (4)| 00:00:01 |

| 6 | VIEW | | 1 | 18 | 26 (4)| 00:00:01 |

|* 7 | FILTER | | | | | |

| 8 | SORT AGGREGATE | | 1 | 80 | | |

|* 9 | HASH JOIN | | 717 | 57360 | 26 (4)| 00:00:01 |

|* 10 | HASH JOIN | | 67 | 4623 | 7 (15)| 00:00:01 |

| 11 | TABLE ACCESS FULL | MKTDRIDAILYRESAVAIL | 17 | 629 | 3 (0)| 00:00:01 |

|* 12 | TABLE ACCESS FULL | MKTDRIHRLYRESAVAIL | 67 | 2144 | 3 (0)| 00:00:01 |

| 13 | TABLE ACCESS FULL | MKTHOUR | 1752 | 19272 | 19 (0)| 00:00:01 |

| 14 | VIEW | | 1 | 22 | 110 (1)| 00:00:02 |

| 15 | VIEW | | 1 | 9 | 110 (1)| 00:00:02 |

|* 16 | FILTER | | | | | |

| 17 | SORT AGGREGATE | | 1 | 19 | | |

| 18 | MERGE JOIN | | 365 | 6935 | 110 (1)| 00:00:02 |

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

| 20 | INDEX FULL SCAN | XPKMKTSTUDYMODE | 16 | | 1 (0)| 00:00:01 |

|* 21 | SORT JOIN | | 1318 | 13180 | 106 (1)| 00:00:02 |

|* 22 | TABLE ACCESS FULL | MKTPLAN | 1318 | 13180 | 105 (0)| 00:00:02 |

| 23 | BUFFER SORT | | 1 | 22 | 153 (1)| 00:00:02 |

| 24 | VIEW | | 1 | 22 | 125 (0)| 00:00:02 |

| 25 | VIEW | | 1 | 9 | 125 (0)| 00:00:02 |

|* 26 | FILTER | | | | | |

| 27 | SORT AGGREGATE | | 1 | 54 | | |

|* 28 | HASH JOIN | | 99 | 5346 | 125 (0)| 00:00:02 |

| 29 | NESTED LOOPS | | | | | |

| 30 | NESTED LOOPS | | 81 | 3483 | 109 (0)| 00:00:02 |

| 31 | NESTED LOOPS | | 94 | 2632 | 27 (0)| 00:00:01 |

| 32 | VIEW | | 1 | 9 | 2 (0)| 00:00:01 |

|* 33 | COUNT STOPKEY | | | | | |

| 34 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 35 | TABLE ACCESS BY INDEX ROWID| MKTCASE | 94 | 1786 | 25 (0)| 00:00:01 |

|* 36 | INDEX RANGE SCAN | XFMKTCASE_MKTDAYAPPV2200_U| 94 | | 1 (0)| 00:00:01 |

|* 37 | INDEX UNIQUE SCAN | XPKMKTPLAN | 1 | | 0 (0)| 00:00:01 |

| 38 | TABLE ACCESS BY INDEX ROWID | MKTPLAN | 1 | 15 | 1 (0)| 00:00:01 |

| 39 | INDEX FAST FULL SCAN | XPKMKTCASEDRFORECAST | 4560 | 50160 | 16 (0)| 00:00:01 |

And with a few more operations ends up at 153

Complex Query Plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 66 | 264 (2)| 00:00:04 |

| 1 | MERGE JOIN OUTER | | 1 | 66 | 264 (2)| 00:00:04 |

| 2 | MERGE JOIN OUTER | | 1 | 44 | 139 (3)| 00:00:02 |

| 3 | NESTED LOOPS OUTER | | 1 | 22 | 28 (4)| 00:00:01 |

| 4 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 5 | VIEW | | 1 | 22 | 26 (4)| 00:00:01 |

| 6 | VIEW | | 1 | 18 | 26 (4)| 00:00:01 |

|* 7 | FILTER | | | | | |

| 8 | SORT AGGREGATE | | 1 | 80 | | |

|* 9 | HASH JOIN | | 717 | 57360 | 26 (4)| 00:00:01 |

|* 10 | HASH JOIN | | 67 | 4623 | 7 (15)| 00:00:01 |

| 11 | TABLE ACCESS FULL | MKTDRIDAILYRESAVAIL | 17 | 629 | 3 (0)| 00:00:01 |

|* 12 | TABLE ACCESS FULL | MKTDRIHRLYRESAVAIL | 67 | 2144 | 3 (0)| 00:00:01 |

| 13 | TABLE ACCESS FULL | MKTHOUR | 1752 | 19272 | 19 (0)| 00:00:01 |

| 14 | VIEW | | 1 | 22 | 110 (1)| 00:00:02 |

| 15 | VIEW | | 1 | 9 | 110 (1)| 00:00:02 |

|* 16 | FILTER | | | | | |

| 17 | SORT AGGREGATE | | 1 | 19 | | |

| 18 | MERGE JOIN | | 365 | 6935 | 110 (1)| 00:00:02 |

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

| 20 | INDEX FULL SCAN | XPKMKTSTUDYMODE | 16 | | 1 (0)| 00:00:01 |

|* 21 | SORT JOIN | | 1318 | 13180 | 106 (1)| 00:00:02 |

|* 22 | TABLE ACCESS FULL | MKTPLAN | 1318 | 13180 | 105 (0)| 00:00:02 |

| 23 | BUFFER SORT | | 1 | 22 | 153 (1)| 00:00:02 |

| 24 | VIEW | | 1 | 22 | 125 (0)| 00:00:02 |

| 25 | VIEW | | 1 | 9 | 125 (0)| 00:00:02 |

|* 26 | FILTER | | | | | |

| 27 | SORT AGGREGATE | | 1 | 54 | | |

|* 28 | HASH JOIN | | 99 | 5346 | 125 (0)| 00:00:02 |

| 29 | NESTED LOOPS | | | | | |

| 30 | NESTED LOOPS | | 81 | 3483 | 109 (0)| 00:00:02 |

| 31 | NESTED LOOPS | | 94 | 2632 | 27 (0)| 00:00:01 |

| 32 | VIEW | | 1 | 9 | 2 (0)| 00:00:01 |

|* 33 | COUNT STOPKEY | | | | | |

| 34 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 35 | TABLE ACCESS BY INDEX ROWID| MKTCASE | 94 | 1786 | 25 (0)| 00:00:01 |

|* 36 | INDEX RANGE SCAN | XFMKTCASE_MKTDAYAPPV2200_U| 94 | | 1 (0)| 00:00:01 |

|* 37 | INDEX UNIQUE SCAN | XPKMKTPLAN | 1 | | 0 (0)| 00:00:01 |

| 38 | TABLE ACCESS BY INDEX ROWID | MKTPLAN | 1 | 15 | 1 (0)| 00:00:01 |

| 39 | INDEX FAST FULL SCAN | XPKMKTCASEDRFORECAST | 4560 | 50160 | 16 (0)| 00:00:01 |

106+4 = 110

Complex Query Plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 66 | 264 (2)| 00:00:04 |

| 1 | MERGE JOIN OUTER | | 1 | 66 | 264 (2)| 00:00:04 |

| 2 | MERGE JOIN OUTER | | 1 | 44 | 139 (3)| 00:00:02 |

| 3 | NESTED LOOPS OUTER | | 1 | 22 | 28 (4)| 00:00:01 |

| 4 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 5 | VIEW | | 1 | 22 | 26 (4)| 00:00:01 |

| 6 | VIEW | | 1 | 18 | 26 (4)| 00:00:01 |

|* 7 | FILTER | | | | | |

| 8 | SORT AGGREGATE | | 1 | 80 | | |

|* 9 | HASH JOIN | | 717 | 57360 | 26 (4)| 00:00:01 |

|* 10 | HASH JOIN | | 67 | 4623 | 7 (15)| 00:00:01 |

| 11 | TABLE ACCESS FULL | MKTDRIDAILYRESAVAIL | 17 | 629 | 3 (0)| 00:00:01 |

|* 12 | TABLE ACCESS FULL | MKTDRIHRLYRESAVAIL | 67 | 2144 | 3 (0)| 00:00:01 |

| 13 | TABLE ACCESS FULL | MKTHOUR | 1752 | 19272 | 19 (0)| 00:00:01 |

| 14 | VIEW | | 1 | 22 | 110 (1)| 00:00:02 |

| 15 | VIEW | | 1 | 9 | 110 (1)| 00:00:02 |

|* 16 | FILTER | | | | | |

| 17 | SORT AGGREGATE | | 1 | 19 | | |

| 18 | MERGE JOIN | | 365 | 6935 | 110 (1)| 00:00:02 |

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

| 20 | INDEX FULL SCAN | XPKMKTSTUDYMODE | 16 | | 1 (0)| 00:00:01 |

|* 21 | SORT JOIN | | 1318 | 13180 | 106 (1)| 00:00:02 |

|* 22 | TABLE ACCESS FULL | MKTPLAN | 1318 | 13180 | 105 (0)| 00:00:02 |

| 23 | BUFFER SORT | | 1 | 22 | 153 (1)| 00:00:02 |

| 24 | VIEW | | 1 | 22 | 125 (0)| 00:00:02 |

| 25 | VIEW | | 1 | 9 | 125 (0)| 00:00:02 |

|* 26 | FILTER | | | | | |

| 27 | SORT AGGREGATE | | 1 | 54 | | |

|* 28 | HASH JOIN | | 99 | 5346 | 125 (0)| 00:00:02 |

| 29 | NESTED LOOPS | | | | | |

| 30 | NESTED LOOPS | | 81 | 3483 | 109 (0)| 00:00:02 |

| 31 | NESTED LOOPS | | 94 | 2632 | 27 (0)| 00:00:01 |

| 32 | VIEW | | 1 | 9 | 2 (0)| 00:00:01 |

|* 33 | COUNT STOPKEY | | | | | |

| 34 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 35 | TABLE ACCESS BY INDEX ROWID| MKTCASE | 94 | 1786 | 25 (0)| 00:00:01 |

|* 36 | INDEX RANGE SCAN | XFMKTCASE_MKTDAYAPPV2200_U| 94 | | 1 (0)| 00:00:01 |

|* 37 | INDEX UNIQUE SCAN | XPKMKTPLAN | 1 | | 0 (0)| 00:00:01 |

| 38 | TABLE ACCESS BY INDEX ROWID | MKTPLAN | 1 | 15 | 1 (0)| 00:00:01 |

| 39 | INDEX FAST FULL SCAN | XPKMKTCASEDRFORECAST | 4560 | 50160 | 16 (0)| 00:00:01 |

A few more operations but still at 110

Complex Query Plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 66 | 264 (2)| 00:00:04 |

| 1 | MERGE JOIN OUTER | | 1 | 66 | 264 (2)| 00:00:04 |

| 2 | MERGE JOIN OUTER | | 1 | 44 | 139 (3)| 00:00:02 |

| 3 | NESTED LOOPS OUTER | | 1 | 22 | 28 (4)| 00:00:01 |

| 4 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 5 | VIEW | | 1 | 22 | 26 (4)| 00:00:01 |

| 6 | VIEW | | 1 | 18 | 26 (4)| 00:00:01 |

|* 7 | FILTER | | | | | |

| 8 | SORT AGGREGATE | | 1 | 80 | | |

|* 9 | HASH JOIN | | 717 | 57360 | 26 (4)| 00:00:01 |

|* 10 | HASH JOIN | | 67 | 4623 | 7 (15)| 00:00:01 |

| 11 | TABLE ACCESS FULL | MKTDRIDAILYRESAVAIL | 17 | 629 | 3 (0)| 00:00:01 |

|* 12 | TABLE ACCESS FULL | MKTDRIHRLYRESAVAIL | 67 | 2144 | 3 (0)| 00:00:01 |

| 13 | TABLE ACCESS FULL | MKTHOUR | 1752 | 19272 | 19 (0)| 00:00:01 |

| 14 | VIEW | | 1 | 22 | 110 (1)| 00:00:02 |

| 15 | VIEW | | 1 | 9 | 110 (1)| 00:00:02 |

|* 16 | FILTER | | | | | |

| 17 | SORT AGGREGATE | | 1 | 19 | | |

| 18 | MERGE JOIN | | 365 | 6935 | 110 (1)| 00:00:02 |

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

| 20 | INDEX FULL SCAN | XPKMKTSTUDYMODE | 16 | | 1 (0)| 00:00:01 |

|* 21 | SORT JOIN | | 1318 | 13180 | 106 (1)| 00:00:02 |

|* 22 | TABLE ACCESS FULL | MKTPLAN | 1318 | 13180 | 105 (0)| 00:00:02 |

| 23 | BUFFER SORT | | 1 | 22 | 153 (1)| 00:00:02 |

| 24 | VIEW | | 1 | 22 | 125 (0)| 00:00:02 |

| 25 | VIEW | | 1 | 9 | 125 (0)| 00:00:02 |

|* 26 | FILTER | | | | | |

| 27 | SORT AGGREGATE | | 1 | 54 | | |

|* 28 | HASH JOIN | | 99 | 5346 | 125 (0)| 00:00:02 |

| 29 | NESTED LOOPS | | | | | |

| 30 | NESTED LOOPS | | 81 | 3483 | 109 (0)| 00:00:02 |

| 31 | NESTED LOOPS | | 94 | 2632 | 27 (0)| 00:00:01 |

| 32 | VIEW | | 1 | 9 | 2 (0)| 00:00:01 |

|* 33 | COUNT STOPKEY | | | | | |

| 34 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 35 | TABLE ACCESS BY INDEX ROWID| MKTCASE | 94 | 1786 | 25 (0)| 00:00:01 |

|* 36 | INDEX RANGE SCAN | XFMKTCASE_MKTDAYAPPV2200_U| 94 | | 1 (0)| 00:00:01 |

|* 37 | INDEX UNIQUE SCAN | XPKMKTPLAN | 1 | | 0 (0)| 00:00:01 |

| 38 | TABLE ACCESS BY INDEX ROWID | MKTPLAN | 1 | 15 | 1 (0)| 00:00:01 |

| 39 | INDEX FAST FULL SCAN | XPKMKTCASEDRFORECAST | 4560 | 50160 | 16 (0)| 00:00:01 |

19+7 = 26 and 26+2 = 28

Complex Query Plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 66 | 264 (2)| 00:00:04 |

| 1 | MERGE JOIN OUTER | | 1 | 66 | 264 (2)| 00:00:04 |

| 2 | MERGE JOIN OUTER | | 1 | 44 | 139 (3)| 00:00:02 |

| 3 | NESTED LOOPS OUTER | | 1 | 22 | 28 (4)| 00:00:01 |

| 4 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 5 | VIEW | | 1 | 22 | 26 (4)| 00:00:01 |

| 6 | VIEW | | 1 | 18 | 26 (4)| 00:00:01 |

|* 7 | FILTER | | | | | |

| 8 | SORT AGGREGATE | | 1 | 80 | | |

|* 9 | HASH JOIN | | 717 | 57360 | 26 (4)| 00:00:01 |

|* 10 | HASH JOIN | | 67 | 4623 | 7 (15)| 00:00:01 |

| 11 | TABLE ACCESS FULL | MKTDRIDAILYRESAVAIL | 17 | 629 | 3 (0)| 00:00:01 |

|* 12 | TABLE ACCESS FULL | MKTDRIHRLYRESAVAIL | 67 | 2144 | 3 (0)| 00:00:01 |

| 13 | TABLE ACCESS FULL | MKTHOUR | 1752 | 19272 | 19 (0)| 00:00:01 |

| 14 | VIEW | | 1 | 22 | 110 (1)| 00:00:02 |

| 15 | VIEW | | 1 | 9 | 110 (1)| 00:00:02 |

|* 16 | FILTER | | | | | |

| 17 | SORT AGGREGATE | | 1 | 19 | | |

| 18 | MERGE JOIN | | 365 | 6935 | 110 (1)| 00:00:02 |

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

110 28+1 more CPU = 139

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

| 20 | INDEX FULL SCAN | XPKMKTSTUDYMODE | 16 | | 1 (0)| 00:00:01 |

|* 21 | SORT JOIN | | 1318 | 13180 | 106 (1)| 00:00:02 |

|* 22 | TABLE ACCESS FULL | MKTPLAN | 1318 | 13180 | 105 (0)| 00:00:02 |

| 23 | BUFFER SORT | | 1 | 22 | 153 (1)| 00:00:02 |

| 24 | VIEW | | 1 | 22 | 125 (0)| 00:00:02 |

| 25 | VIEW | | 1 | 9 | 125 (0)| 00:00:02 |

|* 26 | FILTER | | | | | |

| 27 | SORT AGGREGATE | | 1 | 54 | | |

|* 28 | HASH JOIN | | 99 | 5346 | 125 (0)| 00:00:02 |

| 29 | NESTED LOOPS | | | | | |

| 30 | NESTED LOOPS | | 81 | 3483 | 109 (0)| 00:00:02 |

| 31 | NESTED LOOPS | | 94 | 2632 | 27 (0)| 00:00:01 |

| 32 | VIEW | | 1 | 9 | 2 (0)| 00:00:01 |

|* 33 | COUNT STOPKEY | | | | | |

| 34 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 35 | TABLE ACCESS BY INDEX ROWID| MKTCASE | 94 | 1786 | 25 (0)| 00:00:01 |

|* 36 | INDEX RANGE SCAN | XFMKTCASE_MKTDAYAPPV2200_U| 94 | | 1 (0)| 00:00:01 |

|* 37 | INDEX UNIQUE SCAN | XPKMKTPLAN | 1 | | 0 (0)| 00:00:01 |

| 38 | TABLE ACCESS BY INDEX ROWID | MKTPLAN | 1 | 15 | 1 (0)| 00:00:01 |

| 39 | INDEX FAST FULL SCAN | XPKMKTCASEDRFORECAST | 4560 | 50160 | 16 (0)| 00:00:01 |

Complex Query Plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 66 | 264 (2)| 00:00:04 |

| 1 | MERGE JOIN OUTER | | 1 | 66 | 264 (2)| 00:00:04 |

| 2 | MERGE JOIN OUTER | | 1 | 44 | 139 (3)| 00:00:02 |

| 3 | NESTED LOOPS OUTER | | 1 | 22 | 28 (4)| 00:00:01 |

| 4 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 5 | VIEW | | 1 | 22 | 26 (4)| 00:00:01 |

| 6 | VIEW | | 1 | 18 | 26 (4)| 00:00:01 |

|* 7 | FILTER | | | | | |

| 8 | SORT AGGREGATE | | 1 | 80 | | |

|* 9 | HASH JOIN | | 717 | 57360 | 26 (4)| 00:00:01 |

|* 10 | HASH JOIN | | 67 | 4623 | 7 (15)| 00:00:01 |

| 11 | TABLE ACCESS FULL | MKTDRIDAILYRESAVAIL | 17 | 629 | 3 (0)| 00:00:01 |

|* 12 | TABLE ACCESS FULL | MKTDRIHRLYRESAVAIL | 67 | 2144 | 3 (0)| 00:00:01 |

| 13 | TABLE ACCESS FULL | MKTHOUR | 1752 | 19272 | 19 (0)| 00:00:01 |

| 14 | VIEW | | 1 | 22 | 110 (1)| 00:00:02 |

| 15 | VIEW | | 1 | 9 | 110 (1)| 00:00:02 |

|* 16 | FILTER | | | | | |

| 17 | SORT AGGREGATE | | 1 | 19 | | |

| 18 | MERGE JOIN | | 365 | 6935 | 110 (1)| 00:00:02 |

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

Morgan's Library - www.morganslibrary.org

How To Read and Interpret an Explain Plan

125v+139 = 264

|* 19 | TABLE ACCESS BY INDEX ROWID | MKTSTUDYMODE | 2 | 18 | 4 (0)| 00:00:01 |

| 20 | INDEX FULL SCAN | XPKMKTSTUDYMODE | 16 | | 1 (0)| 00:00:01 |

|* 21 | SORT JOIN | | 1318 | 13180 | 106 (1)| 00:00:02 |

|* 22 | TABLE ACCESS FULL | MKTPLAN | 1318 | 13180 | 105 (0)| 00:00:02 |

| 23 | BUFFER SORT | | 1 | 22 | 153 (1)| 00:00:02 |

| 24 | VIEW | | 1 | 22 | 125 (0)| 00:00:02 |

| 25 | VIEW | | 1 | 9 | 125 (0)| 00:00:02 |

|* 26 | FILTER | | | | | |

| 27 | SORT AGGREGATE | | 1 | 54 | | |

|* 28 | HASH JOIN | | 99 | 5346 | 125 (0)| 00:00:02 |

| 29 | NESTED LOOPS | | | | | |

| 30 | NESTED LOOPS | | 81 | 3483 | 109 (0)| 00:00:02 |

| 31 | NESTED LOOPS | | 94 | 2632 | 27 (0)| 00:00:01 |

| 32 | VIEW | | 1 | 9 | 2 (0)| 00:00:01 |

|* 33 | COUNT STOPKEY | | | | | |

| 34 | FAST DUAL | | 1 | | 2 (0)| 00:00:01 |

| 35 | TABLE ACCESS BY INDEX ROWID| MKTCASE | 94 | 1786 | 25 (0)| 00:00:01 |

|* 36 | INDEX RANGE SCAN | XFMKTCASE_MKTDAYAPPV2200_U| 94 | | 1 (0)| 00:00:01 |

|* 37 | INDEX UNIQUE SCAN | XPKMKTPLAN | 1 | | 0 (0)| 00:00:01 |

| 38 | TABLE ACCESS BY INDEX ROWID | MKTPLAN | 1 | 15 | 1 (0)| 00:00:01 |

| 39 | INDEX FAST FULL SCAN | XPKMKTCASEDRFORECAST | 4560 | 50160 | 16 (0)| 00:00:01 |
