
11

Oracle Insert Statements
for DBAs and Developers

Tuesday: July 11, 2017

Daniel A. Morgan
dmorgan@forsythe.com
+1 206-669-2949

2

Introduction

33

Dan Morgan

 Principal Adviser: Forsythe Meta7

 Oracle ACE Director

 More than 45 years technology experience

 First computer was an IBM 360/40 mainframe in 1970

 Fortran IV and Punch Cards

 Curriculum author and primary Oracle instructor at University of Washington

 Guest lecturer on Oracle at Harvard University

 Decades of hands-on SQL, PL/SQL, and DBA experience

 The "Morgan" behind Morgan's Library on the web
www.morganslibrary.org

 10g, 11g, and 12c Beta tester

 Co-Founder Intl. GoldenGate Oracle Users Group

 Contact email: dmorgan@forsythe.com

44

My Websites: Morgan's Library

www.morganslibrary.org

5

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorgan11g
twitter: @meta7solutions

Zero Downtime Database
Migrations with GoldenGate

6

How Do You Safeguard the Database
Against Today’s Cyber Threats?

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorgan11g
twitter: @meta7solutions

7

VLDBs and
Database

Partitioning

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorgan11g
twitter: @meta7solutions

8

Database Performance

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorgan11g
twitter: @meta7solutions

9

IT Fire Fighting

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorgan11g
twitter: @meta7solutions

10

Oracle DBaaS Migration Road Map

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorgan11g
twitter: @meta7solutions

1111

Travel Log: 2010 - Lima Peru

1212

Travel Log: 2013 - Beijing China

1313

Travel Log: 2014 - Galapagos Islands Ecuador

1414

Travel Log: 2015 - Turkey

Europe

Asia

1515

Travel Log: 2016 - California

1616

Content Density Warning

Take Notes ... Ask Questions

1717

Why Am I Focusing On INSERT Statements?

 Because no one else is

 Because Oracle University doesn't teach this material

 Because there are 17 pages in the 12c docs on INSERT statements

 Because almost no one knows the full syntax for basic DML statements

 Because we have now spent more than 30 years talking about performance
tuning and yet the number one conference and training topic remains tuning
which proves that we need to stop focusing on edge cases and focus, instead,
on the basics

 Because explain plans, AWR Reports, and trace files will never fix a problem if
you don't know the full range of syntaxes available

 Because the best way to achieve high performance is to choose techniques
that reduce resource utilization

18

Insert Statements

1919

SQL DML

 DML stands for Data Manipulation Language

 DML is a direct reference to the following SQL statements

 INSERT

 UPDATE

 DELETE

 MERGE

2020

SQL INSERT Statement Topics

 Basic Insert

 INSERT WHEN

 INSERT ALL

 INSERT ALL WHEN

 INSERT FIRST WHEN

 INSERT INTO A SELECT STATEMENT

 INSERT WITH CHECK OPTION

 View Inserts

 Editioning View Inserts

 Partitioned Table Inserts

 Cluster Table Inserts

 Tables with Virtual Columns Insert

 Tables with Hidden Columns Insert

 Create Table As Inserts

 Nested Table Inserts

 VARRAY Table Inserts

 MERGE Statement Insert

2121

PL/SQL INSERT Statement Topics

 Record inserts

 FORALL INSERTs

 FORALL MERGE Inserts

 LOB Inserts

 DBMS_SQL Dynamic Inserts

 Native Dynamic SQL Inserts

 RETURNING Clause with a Sequence

 RETURNING Clause with an Identity Column

2222

Performance Tuning INSERT Statement Topics

 Too Many Columns

 Column Ordering

 Aliasing and Fully Qualified Names

 Implicit Casts

 APPEND hint

 APPEND_VALUES hint

 DBMS_ERRLOG built-in package
 CHANGE_DUPKEY_ERROR_INDEX hint

 IGNORE_ON_DUPKEY_INDEX hint

 DBMS_STATS

 Insert Statement Most Common Error

23

Part 1: SQL Insert Statements

2424

Basic INSERT Statement (1:2)

 Use this syntax to perform inserts into a single column in a heap, global
temporary, IOT, and most partitioned tables

INSERT INTO <table_name>

(<column_name>)

VALUES

(<value>);

CREATE TABLE state (

state_abbrev VARCHAR2(2));

INSERT INTO state

(state_abbrev)

VALUES

('NY');

COMMIT;

SELECT * FROM state;

2525

Basic INSERT Statement (2:2)

 Use this syntax to perform inserts into a single column in a heap, global
temporary, IOT, and most partitioned tables

INSERT INTO <table_name>

(<column_name>, <column_name> [,...])

VALUES

(<value>, <value> [,<value>]);

CREATE TABLE state (

state_abbrev VARCHAR2(2),

state_name VARCHAR2(30));

INSERT INTO state

(state_abbrev, state_name)

VALUES

('NY', 'New York');

COMMIT;

SELECT * FROM state;

2626

INSERT WHEN and INSERT ALL WHEN

 Use this syntax to conditionally insert rows into multiple tables

INSERT

WHEN (<condition>) THEN

INTO <table_name> (<column_list>)

VALUES (<values_list>)

WHEN (<condition>) THEN

INTO <table_name> (<column_list>)

VALUES (<values_list>)

ELSE

INTO <table_name> (<column_list>)

VALUES (<values_list>)

SELECT <column_list> FROM <table_name>;

INSERT

WHEN (deptno=10) THEN

INTO emp_10 (empno,ename,job,mgr,sal,deptno)

VALUES (empno,ename,job,mgr,sal,deptno)

WHEN (deptno=20) THEN

INTO emp_20 (empno,ename,job,mgr,sal,deptno)

VALUES (empno,ename,job,mgr,sal,deptno)

WHEN (deptno=30) THEN

INTO emp_30 (empno,ename,job,mgr,sal,deptno)

VALUES (empno,ename,job,mgr,sal,deptno)

ELSE

INTO leftover (empno,ename,job,mgr,sal,deptno)

VALUES (empno,ename,job,mgr,sal,deptno)

SELECT * FROM emp;

INSERT ALL

WHEN (<condition>) THEN

INTO <table_name> (<column_list>)

VALUES (<values_list>)

WHEN (<condition>) THEN

INTO <table_name> (<column_list>)

VALUES (<values_list>)

ELSE

INTO <table_name> (<column_list>)

VALUES (<values_list>)

SELECT <column_list> FROM <table_name>;

INSERT ALL

WHEN (location < 6) THEN

INTO hq_employee (empno,ename,job,mgr,sal,deptno)

VALUES (empno,ename,job,mgr,sal,deptno)

WHEN (term_date IS NOT NULL) THEN

INTO current_emp (empno,ename,job,mgr,sal,deptno)

VALUES (empno,ename,job,mgr,sal,deptno)

WHEN (rehire = 1) THEN

INTO rehires (empno,ename,job,mgr,sal,deptno)

VALUES (empno,ename,job,mgr,sal,deptno)

ELSE

INTO other_emps (empno,ename,job,mgr,sal,deptno)

VALUES (empno,ename,job,mgr,sal,deptno)

SELECT * FROM emp;

2727

INSERT ALL

 Use this syntax to unconditionally insert data into multiple tables

 Note that columns can go into one target table, multiple target tables, or all
target tables

INSERT ALL

INTO <table_name> VALUES <column_name_list)

INTO <table_name> VALUES <column_name_list)

...

<SELECT Statement>;

INSERT ALL

INTO ap_cust VALUES (customer_id, program_id, delivered_date)

INTO ap_orders VALUES (order_date, program_id)

SELECT program_id, delivered_date, customer_id, order_date

FROM airplanes;

2828

INSERT FIRST WHEN

 With "FIRST" the database evaluates each WHEN clause in the order in which
it appears in the statement and only performs an insert for the first match

INSERT FIRST

WHEN <condition> THEN

INTO <table_name> VALUES <column_name_list)

INTO <table_name> VALUES <column_name_list)

...

<SELECT Statement>;

INSERT FIRST

WHEN customer_id < 'I' THEN

INTO cust_ah

VALUES (customer_id, program_id, delivered_date)

WHEN customer_id < 'Q' THEN

INTO cust_ip

VALUES (customer_id, program_id, delivered_date)

WHEN customer_id > 'PZZZ' THEN

INTO cust_qz

VALUES (customer_id, program_id, delivered_date)

SELECT program_id, delivered_date, customer_id, order_date

FROM airplanes;

2929

INSERT into a SELECT Statement

 Use this syntax to INSERT rows into a table a part of a SELECT statement
from itself or one or more different tables

INSERT INTO (

<SELECT Statement>)

VALUES (value_list);

CREATE TABLE dept (

dept_no NUMBER(3) NOT NULL,

dept_name VARCHAR2(2) NOT NULL,

dept_loc VARCHAR2(30));

INSERT INTO (

SELECT dept_no, dept_name, dept_loc

FROM dept)

VALUES (99, 'TRAVEL', 'SEATTLE');

3030

INSERT with Check Option

 Use this syntax to limit inserted rows to only those that pass CHECK OPTION
validation

INSERT INTO (

<SELECT_statement> WITH CHECK OPTION)

VALUES (value_list);

CREATE TABLE dept (

dept_no NUMBER(3) NOT NULL,

dept_name VARCHAR2(2) NOT NULL,

dept_loc VARCHAR2(30));

INSERT INTO (

SELECT dept_no, dept_name, dept_loc

FROM dept

WHERE deptno < 30 WITH CHECK OPTION)

VALUES (99, 'TRAVEL', 'SEATTLE');

3131

INSERTing into a View

 Evaluate whether a view column is insertable

 Views with aggregations, CONNECT BY, and other syntaxes may not be
insertable

desc cdb_updatable_columns

SELECT cuc.con_id, cuc.owner, cuc.insertable, COUNT(*)

FROM cdb_updatable_columns cuc

WHERE (cuc.con_id, cuc.owner, cuc.table_name) IN

(SELECT cv.con_id, cv.owner, cv.view_name

FROM cdb_views cv)

GROUP BY cuc.con_id, cuc.owner, cuc.insertable

ORDER BY 1,2,3;

CON_ID OWNER INS COUNT(*)

---------- ------------------------- --- ----------

2 ORDSYS NO 4

2 ORDSYS YES 4

2 SYS NO 45190

2 SYS YES 22415

2 SYSTEM NO 172

2 SYSTEM YES 14

2 WMSYS NO 736

2 WMSYS YES 160

3232

INSERTing into an Editioning View

 All editioning views are insertable ... but be sure you are in the correct edition

SQL> CREATE EDITION demo_ed;

SQL> CREATE OR REPLACE EDITIONING VIEW test AS

2 SELECT program_id, line_number

3 FROM airplanes;

View created.

SQL> ALTER SESSION SET EDITION=demo_ed;

Session altered.

SQL> CREATE OR REPLACE EDITIONING VIEW test AS

2 SELECT line_number, program_id

3 FROM airplanes;

View created.

SQL> SELECT * FROM user_editioning_views_ae;

VIEW_NAME TABLE_NAME EDITION_NAME

------------ ----------------------- -------------

TEST AIRPLANES ORA$BASE

TEST AIRPLANES DEMO_ED

3333

INSERTing into a Partitioned Table

 With HASH, LIST, and RANGE partitioning any INSERT statement will work

 With Partition by SYSTEM you must name the partition

CREATE TABLE syst_part (

tx_id NUMBER(5),

begdate DATE)

PARTITION BY SYSTEM (

PARTITION p1,

PARTITION p2,

PARTITION p3);

INSERT INTO syst_part VALUES (1, SYSDATE-10);

*

ERROR at line 1:

ORA-14701: partition-extended name or bind variable must be used

for DMLs on tables partitioned by the System method

INSERT INTO syst_part PARTITION (p1) VALUES (1, SYSDATE-10);

INSERT INTO syst_part PARTITION (p2) VALUES (2, SYSDATE);

INSERT INTO syst_part PARTITION (p3) VALUES (3, SYSDATE+10);

SELECT * FROM syst_part PARTITION(p2);

3434

INSERTing into a Cluster Table (1:3)

 In an Oracle Database a CLUSTER is an object similar in concept to a
SecureFile in that it redefines storage in a portion of a tablespace

 When part of a tablespace is defined as a cluster each block in the cluster is
able to hold more than a single segment minimizing I/O through co-location

 A table and an index

 Single Table Hash Cluster

 Sorted Hash Cluster

 Multiple tables and an index

 Multi-Table Hash Cluster

 Index Cluster

 Oracle's Data Dictionary is almost entirely
defined by clusters which optimize access

SQL> SELECT cluster_name, cluster_type

2 FROM dba_clusters

3 WHERE owner = 'SYS'

4 ORDER BY 1;

CLUSTER_NAME CLUST

------------------------------ -----

C_COBJ# INDEX

C_FILE#_BLOCK# INDEX

C_MLOG# INDEX

C_OBJ# INDEX

C_OBJ#_INTCOL# INDEX

C_RG# INDEX

C_TOID_VERSION# INDEX

C_TS# INDEX

C_USER# INDEX

SMON_SCN_TO_TIME_AUX INDEX

3535

INSERTing into a Cluster Table (2:3)

 It makes a lot of sense to be able to read a single 8K block and get all of this
information and you likely have similar situation in your applications

SQL> SELECT table_name

2 FROM dba_tables

3 WHERE cluster_name = 'C_OBJ#'

4* ORDER BY 1;

TABLE_NAME

ASSEMBLY$

ATTRCOL$ -- column attributes

CLU$ -- clusters

COL$ -- columns

COLTYPE$ -- column types

ICOL$ -- index columns

ICOLDEP$ -- index column dependencies

IND$ -- indexes

LIBRARY$

LOB$ -- CLOBs and BLOBs

NTAB$ -- nested tables

OPQTYPE$ -- opaque data types

REFCON$ -- reference constraints

SUBCOLTYPE$ -- object column attributes

TAB$ -- tables

TYPE_MISC$ -- type miscellaneous information

VIEWTRCOL$ -- view column attributes

3636

INSERTing into a Cluster Table (3:3)

 So let's look at one type of cluster ... the Sorted Hash Cluster

 A very simple way to make the overhead of an ORDER BY clause go away

SQL> CREATE CLUSTER sorted_hc (

2 program_id NUMBER(3),

3 line_id NUMBER(10) SORT,

4 delivery_dt DATE SORT)

5 TABLESPACE uwdata

6 HASHKEYS 9

7 SIZE 750

8 HASH IS program_id;

Cluster created.

SQL> CREATE TABLE shc_airplane (

2 program_id NUMBER(3),

3 line_id NUMBER(10) SORT,

4 delivery_dt DATE SORT,

5 customer_id VARCHAR2(3),

6 order_dt DATE)

7 CLUSTER sorted_hc (program_id, line_id, delivery_dt);

3737

INSERTing into a Table With Virtual Columns

 Virtual columns will appear in a DESCRIBE statement but
you cannot insert values into them

CREATE TABLE vcol (

salary NUMBER(8),

bonus NUMBER(3),

total_comp NUMBER(10) AS (salary+bonus));

desc vcol

SELECT column_id, column_name, virtual_column

FROM user_tab_cols

WHERE table_name = 'VCOL'

INSERT INTO vcol

(salary, bonus, total_comp)

VALUES

(1,2,3);

INSERT INTO vcol

(salary, bonus)

VALUES

(1,2);

SELECT * FROM vcol;

3838

INSERTing into a Table with Invisible Columns

 Invisible columns will not appear in a DESCRIBE statement but you can insert
into them directly

CREATE TABLE vis (

rid NUMBER,

testcol VARCHAR2(20));

CREATE TABLE invis (

rid NUMBER,

testcol VARCHAR2(20) INVISIBLE);

desc vis

desc invis

SELECT table_name, column_name, hidden_column

FROM user_tab_cols -- not found in user_tab_columns

WHERE table_name like '%VIS';

INSERT INTO invis

(rid, testcol)

VALUES

(1, 'TEST');

SELECT * FROM invis;

SELECT rid, testcol FROM invis;

3939

CREATE TABLE as an INSERT Statement

 Use this syntax to create a new table as the result of a SELECT statement
from one or more source tables

CREATE TABLE <table_name> AS

<SELECT Statement>;

CREATE TABLE column_subset AS

SELECT col1, col3, col5

FROM servers;

desc column_subset

SELECT COUNT(*)

FROM column_subset;

4040

Nested Table Insert

 Cast column values using the object column's data type

CREATE OR REPLACE NONEDITIONABLE TYPE CourseList AS TABLE OF VARCHAR2(64);

/

CREATE TABLE department (

name VARCHAR2(20),

director VARCHAR2(20),

office VARCHAR2(20),

courses CourseList)

NESTED TABLE courses STORE AS courses_tab;

INSERT INTO department

(name, director, office, courses)

VALUES

('English', 'Tara Havemeyer', 'Breakstone Hall 205', CourseList(

'Expository Writing',

'Film and Literature',

'Modern Science Fiction',

'Discursive Writing',

'Modern English Grammar',

'Introduction to Shakespeare',

'Modern Drama',

'The Short Story',

'The American Novel'));

4141

VARRAY Table Insert

 Cast column values using the VARRAY column's data type

CREATE OR REPLACE TYPE ProjectList AS VARRAY(50) OF Project;

/

CREATE TABLE department (

dept_id NUMBER(2),

dname VARCHAR2(15),

budget NUMBER(11,2),

projects ProjectList);

INSERT INTO department

(dept_id, dname, budget, projects)

VALUES

(30, 'Accounting', 1205700,

ProjectList (Project(1, 'Design New Expense Report', 3250),

Project(2, 'Outsource Payroll', 12350),

Project(3, 'Evaluate Merger Proposal', 2750),

Project(4, 'Audit Accounts Payable', 1425)));

4242

MERGE Statement Insert

 Use MERGE statements where an insert or other DML action is conditioned
on the results of a SELECT statement result match

MERGE INTO bonuses b

USING (

SELECT employee_id, salary, dept_no

FROM employee

WHERE dept_no =20) e

ON (b.employee_id = e.employee_id)

WHEN MATCHED THEN

UPDATE SET b.bonus = e.salary * 0.1

DELETE WHERE (e.salary < 40000)

WHEN NOT MATCHED THEN

INSERT (b.employee_id, b.bonus)

VALUES (e.employee_id, e.salary * 0.05)

WHERE (e.salary > 40000);

43

Part 2: PL/SQL Insert Statements

4444

Cursor Loops: One Row At A Time

 If you want to make insert statements as slow as possible ... do them one row
at a time. Make each insert statement find a block into which it can be inserted
and then check everything sequentially

CREATE TABLE parent (

part_num NUMBER,

part_name VARCHAR2(15));

CREATE TABLE child AS

SELECT *

FROM parent;

CREATE OR REPLACE PROCEDURE slow_way AUTHID CURRENT_USER IS

BEGIN

FOR r IN (SELECT * FROM parent) LOOP

-- modify record values

r.part_num := r.part_num * 10;

-- store results

INSERT INTO child

VALUES

(r.part_num, r.part_name);

END LOOP;

COMMIT;

END slow_way;

/

4545

Record Inserts

 Use this syntax to insert based on an array that matches the target table
rather than named individual columns

 Adding a new column to the table will not break the statement

CREATE TABLE t AS

SELECT table_name, tablespace_name

FROM all_tables;

SELECT COUNT(*)

FROM t;

DECLARE

trec t%ROWTYPE;

BEGIN

trec.table_name := 'NEW';

trec.tablespace_name := 'NEW_TBSP';

INSERT INTO t

VALUES trec;

COMMIT;

END;

/

SELECT COUNT(*) FROM t;

4646

FORALL INSERTs (1:3)

 Use this syntax to greatly enhance
performance but be sure you
understand the concept of DIRECT
LOAD INSERTs

 With this syntax I can insert
500,000 rows per second on
my laptop

 Learn

 Limits Clause

 Save Exceptions

 Partial Collections

 Sparse Collections

 In Indices Of Clause

CREATE OR REPLACE PROCEDURE fast_way AUTHID CURRENT_USER IS

TYPE myarray IS TABLE OF parent%ROWTYPE;

l_data myarray;

CURSOR r IS

SELECT part_num, part_name

FROM parent;

BatchSize CONSTANT POSITIVE := 1000;

BEGIN

OPEN r;

LOOP

FETCH r BULK COLLECT INTO l_data LIMIT BatchSize;

FOR j IN 1 .. l_data.COUNT LOOP

l_data(j).part_num := l_data(j).part_num * 10;

END LOOP;

FORALL i IN 1..l_data.COUNT

INSERT INTO child VALUES l_data(i);

EXIT WHEN l_data.COUNT < BatchSize;

END LOOP;

COMMIT;

CLOSE r;

END fast_way;

/

4747

FORALL INSERTs (2:3)

 Use this syntax to greatly enhance
performance but be sure you
understand the concept of DIRECT
LOAD INSERTs

 With this syntax I can insert
500,000 rows per second on
my laptop

 Learn

 Limits Clause

 Save Exceptions

 Partial Collections

 Sparse Collections

 In Indices Of Clause

CREATE OR REPLACE PROCEDURE fast_way AUTHID CURRENT_USER IS

TYPE PartNum IS TABLE OF parent.part_num%TYPE

INDEX BY BINARY_INTEGER;

pnum_t PartNum;

TYPE PartName IS TABLE OF parent.part_name%TYPE

INDEX BY BINARY_INTEGER;

pnam_t PartName;

BEGIN

SELECT part_num, part_name

BULK COLLECT INTO pnum_t, pnam_t

FROM parent;

FOR i IN pnum_t.FIRST .. pnum_t.LAST LOOP

pnum_t(i) := pnum_t(i) * 10;

END LOOP;

FORALL i IN pnum_t.FIRST .. pnum_t.LAST

INSERT INTO child

(part_num, part_name)

VALUES

(pnum_t(i), pnam_t(i));

COMMIT;

END fast_way;

/

4848

FORALL INSERTs (3:3)

 Use this syntax to greatly enhance
performance but be sure you
understand the concept of DIRECT
LOAD INSERTs

 With this syntax I can insert
500,000 rows per second on
my laptop

 Learn

 Limits Clause

 Save Exceptions

 Partial Collections

 Sparse Collections

 In Indices Of Clause

CREATE OR REPLACE PROCEDURE fast_way AUTHID CURRENT_USER IS

TYPE parent_rec IS RECORD (

part_num dbms_sql.number_table,

part_name dbms_sql.varchar2_table);

p_rec parent_rec;

CURSOR c IS

SELECT part_num, part_name FROM parent;

l_done BOOLEAN;

BEGIN

OPEN c;

LOOP

FETCH c BULK COLLECT INTO p_rec.part_num, p_rec.part_name

LIMIT 500;

l_done := c%NOTFOUND;

FOR i IN 1 .. p_rec.part_num.COUNT LOOP

p_rec.part_num(i) := p_rec.part_num(i) * 10;

END LOOP;

FORALL i IN 1 .. p_rec.part_num.COUNT

INSERT INTO child

(part_num, part_name)

VALUES

(p_rec.part_num(i), p_rec.part_name(i));

EXIT WHEN (l_done);

END LOOP;

COMMIT;

CLOSE c;

END fast_way;

/

4949

FORALL MERGE Inserts

 Use this syntax to execute a MERGE statement using data in an array data
(most likely selected using BULK COLLECT)

CREATE OR REPLACE PROCEDURE forall_merge AUTHID CURRENT_USER IS

TYPE ridVal IS TABLE OF forall_tgt.rid%TYPE

INDEX BY BINARY_INTEGER;

l_data ridVal;

BEGIN

SELECT rid BULK COLLECT INTO l_data

FROM forall_src;

FORALL i IN l_data.FIRST .. l_data.LAST

MERGE INTO forall_tgt ft

USING (

SELECT rid

FROM forall_src fs

WHERE fs.rid = l_data(i)) al

ON (al.rid = ft.rid)

WHEN MATCHED THEN

UPDATE SET upd = 'U'

WHEN NOT MATCHED THEN

INSERT (rid, ins, upd)

VALUES (l_data(i), 'I', NULL);

COMMIT;

END forall_merge;

/

5050

LOB Insert

 When creating LOB objects be
sure to use SecureFiles and be
sure that you understand
PCTVERSION, CHUNK, and
other storage parameters

 Failure to understand how
LOBs process undo can result
in massive waste of space

DECLARE

src_file BFILE;

dst_file BLOB;

lgh_file BINARY_INTEGER;

retval VARCHAR2(30);

BEGIN

src_file := bfilename('CTEMP', 'sphere.mpg');

INSERT INTO sct

(rid, bcol)

VALUES

(1, EMPTY_BLOB())

RETURNING bcol INTO dst_file;

SELECT bcol

INTO dst_file

FROM sct

WHERE rid = 1

FOR UPDATE;

dbms_lob.fileopen(src_file, dbms_lob.file_readonly);

lgh_file := dbms_lob.getlength(src_file);

dbms_lob.loadFromFile(dst_file, src_file, lgh_file);

UPDATE sct

SET bcol = dst_file

WHERE rid = 1;

dbms_lob.setContentType(dst_file, 'MPG Movie');

retval := dbms_lob.getContentType(dst_file);

dbms_output.put_line(retval);

dbms_lob.fileclose(src_file);

END load_file;

/

5151

DBMS_SQL Dynamic Inserts

 DBMS_SQL is the legacy implementation of dynamic SQL in the Oracle
database introduced in version 7

CREATE OR REPLACE PROCEDURE single_row_insert(c1 NUMBER, c2 NUMBER, r OUT NUMBER) IS

c NUMBER;

n NUMBER;

BEGIN

c := dbms_sql.open_cursor;

dbms_sql.parse(c, 'INSERT INTO tab VALUES (:bnd1, :bnd2) ' || 'RETURNING c1*c2 into :bnd3', 2);

dbms_sql.bind_variable(c, 'bnd1', c1);

dbms_sql.bind_variable(c, 'bnd2', c2);

dbms_sql.bind_variable(c, 'bnd3', r);

n := dbms_sql.execute(c);

dbms_sql.variable_value(c, 'bnd3', r); -- get value of outbind

dbms_sql.close_cursor(c);

END single_row_insert;

/

5252

Native Dynamic SQL Inserts

 Native Dynamic SQL has largely replaced DBMS_SQL as it is robust and
more easily coded

BEGIN

FOR i IN 1 .. 10000

LOOP

EXECUTE IMMEDIATE 'INSERT INTO t VALUES (:x)'

USING i;

END LOOP;

END;

/

5353

RETURNING Clause with a Sequence

 Use this syntax to return values from an insert statement unknown to the
program inserting the row

INSERT INTO <table_name>

(column_list)

VALUES

(values_list)

RETURNING <value_name>

INTO <variable_name>;

DECLARE

x emp.empno%TYPE;

r rowid;

BEGIN

INSERT INTO emp

(empno, ename)

VALUES

(seq_emp.NEXTVAL, 'Morgan')

RETURNING rowid, empno

INTO r, x;

dbms_output.put_line(r);

dbms_output.put_line(x);

END;

/

5454

RETURNING Clause with an Identify Column

 Use this syntax to return values from an insert statement unknown to the
program inserting the row

CREATE TABLE idcoltab (

rec_id NUMBER(38) GENERATED ALWAYS AS IDENTITY,

coltxt VARCHAR2(30));

DECLARE

rid idcoltab.rec_id%TYPE;

BEGIN

INSERT INTO idcoltab

(coltxt)

VALUES

('Morgan')

RETURNING rec_id

INTO rid;

dbms_output.put_line(rid);

END;

/

5555

RETURNING Clause with Native Dynamic SQL

 Use this syntax to return values from an insert statement created using Native
Dynamic SQL

DECLARE

sql_stmt VARCHAR2(128);

dno dept_ret.deptno%TYPE;

BEGIN

sql_stmt := 'INSERT INTO dept_ret (deptno, dname, location) ' ||

'VALUES (seq.NEXTVAL, ''PERSONNEL'', ''SEATTLE'') ' ||

'RETURNING deptno INTO :retval';

EXECUTE IMMEDIATE sql_stmt RETURNING INTO dno;

dbms_output.put_line(TO_CHAR(dno));

END;

/

56

Performance Tuning Insert Statements

5757

Considerations

 Table structure

 Indexes

 Triggers

 It is always more efficient if you code it right once rather than making the
database fix it thousands or millions of times

5858

Too Many Columns

 Oracle claims that a table can contain up to 1,000 columns: It is not true. No
database can do 1,000 columns no matter what their marketing claims may be

 The maximum number of real table columns is 255

 Break the 255 barrier and optimizations such as advanced and hybrid
columnar compression no longer work

 A 1,000 column table is actually four segments joined together behind the
scenes just as a partitioned table appears to be a single segment but isn't

 Be suspicious of any table with more than 50 columns. At 100 columns it is
time to take a break and re-read the Codd-Date rules on normalization

 Think vertically not horizontally

 Be very suspicious of any table with column names in the form "SPARE1",
"SPARE2", "..."

 The more columns a table has the more cpu is required when accessing
columns to the right (as the table is displayed in a SELECT * query ... or at the bottom if the table is

displayed by a DESCribe)

5959

Column Ordering (1:2)

 Computers are not humans and tables are not paper forms

 CBO's column retrieval cost

 Oracle stores columns in variable length format

 Each row is parsed in order to retrieve one or more columns

 Each subsequently parsed column introduces a cost of 20 cpu cycles regardless of
whether it is of value or not

 These tables will be accessed by person_id or state: No one will ever put the
address2 column into the WHERE clause as a filter ... they won't filter on
middle initial either

CREATE TABLE customers (

person_id NUMBER,

first_name VARCHAR2(30) NOT NULL,

middle_init VARCHAR2(2),

last_name VARCHAR2(30) NOT NULL,

address1 VARCHAR2(30),

address2 VARCHAR2(30),

city VARCHAR2(30),

state VARCHAR2(2));

Common Design

CREATE TABLE customers (

person_id NUMBER,

last_name VARCHAR2(30) NOT NULL,

state VARCHAR2(2) NOT NULL,

city VARCHAR2(30) NOT NULL,

first_name VARCHAR2(30) NOT NULL,

address1 VARCHAR2(30),

address2 VARCHAR2(30),

middle_init VARCHAR2(2));

Optimized Design

6060

Column Ordering (2:2)

 Proof column order matters

CREATE TABLE read_test AS

SELECT *

FROM apex_040200.wwv_flow_page_plugs

WHERE rownum = 1;

SQL> explain plan for

2 select * from read_test;

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 214K| 2 (0)| 00:00:01 |

| 1 | TABLE ACCESS FULL| READ_TEST | 1 | 214K| 2 (0)| 00:00:01 |

-- fetch value from column 1

Final cost for query block SEL$1 (#0) - All Rows Plan:

Best join order: 1

Cost: 2.0002 Degree: 1 Card: 1.0000 Bytes: 13

Resc: 2.0002 Resc_io: 2.0000 Resc_cpu: 7271

Resp: 2.0002 Resp_io: 2.0000 Resc_cpu: 7271

-- fetch value from column 193

Final cost for query block SEL$1 (#0) - All Rows Plan:

Best join order: 1

Cost: 2.0003 Degree: 1 Card: 1.0000 Bytes: 2002

Resc: 2.0003 Resc_io: 2.0000 Resc_cpu: 11111

Resp: 2.0003 Resp_io: 2.0000 Resc_cpu: 11111

6161

Aliasing and Fully Qualified Names

 When you do not use fully qualified names Oracle must do the work for you

 You write code once ... the database executes it many times

SELECT DISTINCT s.srvr_id

FROM servers s, serv_inst i

WHERE s.srvr_id = i.srvr_id;

SELECT DISTINCT s.srvr_id

FROM uwclass.servers s, uwclass.serv_inst i

WHERE s.srvr_id = i.srvr_id;

6262

Implicit Casts

 Code that does not correctly define data types will either fail to run or run very
inefficiently

The following example shows both the correct way and the incorrect way to
work with dates. The correct way is to perform an explicit cast

SQL> create table t (

2 datecol date);

Table created.

SQL> insert into t values ('01-JAN-2016');

1 row created.

SQL> insert into t values (TO_DATE('01-JAN-2016'));

1 row created.

6363

Jonathan Lewis' Rules for Hints

1. Don't

2. If you must use hints, then assume you've used them incorrectly

3. On every patch or upgrade to Oracle, assume every piece of hinted SQL is going to do
the wrong thing

Because of (2) above; you've been lucky so far, but the patch/upgrade lets you
discover your mistake

4. Every time you apply some DDL to an object that appears in a piece of hinted SQL
assume that the hinted SQL is going to do the wrong thing

Because of (2) above; you've been lucky so far, but the structural change lets you
discover your mistake

6464

APPEND Hint

 The APPEND hint enables direct-path INSERT if the database is running in
serial mode. The database is in serial mode if you are not using Enterprise
Edition. Conventional INSERT is the default in serial mode, and direct-path
INSERT is the default in parallel mode

 In direct-path INSERT data is appended above the high-water mark potentially
improving performance

INSERT /*+ APPEND */ INTO t

SELECT * FROM servers;

6565

APPEND_VALUES Hint

 Use this new 12c hint
instructs the optimizer to
use direct-path INSERT
with the VALUES clause

 If you do not specify this
hint, then conventional
INSERT is used

 This hint is only
supported with the
VALUES clause of the
INSERT statement

 If you specify it with an
insert that uses the
subquery syntax it is
ignored

SQL> EXPLAIN PLAN FOR

2 INSERT INTO t

3 VALUES

4 ('XYZ');

SQL> SELECT * FROM TABLE(dbms_xplan.display);

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | INSERT STATEMENT | | 1 | 100 | 1 (0)| 00:00:01 |

| 1 | LOAD TABLE CONVENTIONAL | T | | | | |

SQL> EXPLAIN PLAN FOR

2 INSERT /*+ APPEND_VALUES */ INTO t

3 VALUES

4 ('XYZ');

SQL> SELECT * FROM TABLE(dbms_xplan.display);

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | INSERT STATEMENT | | 1 | 100 | 1 (0)| 00:00:01 |

| 1 | LOAD AS SELECT | T | | | | |

| 2 | BULK BINDS GET | | | | | |

6666

CHANGE_DUPKEY_ERROR_INDEX Hint

 Use this hint to unambiguously identify a unique key violation for a specified
set of columns or for a specified index

 When a unique key violation occurs for the specified index, an ORA-38911
error is reported instead of an ORA-00001

INSERT /*+ CHANGE_DUPKEY_ERROR_INDEX(T,TESTCOL) */ INTO t

(testcol)

VALUES

('A');

6767

IGNORE_ON_DUPKEY_INDEX Hint

 This hint applies only to single-table INSERT operations

 It causes the statement to ignore a unique key violation for a specified set of
columns or for a specified index

 When a unique key violation is encountered, a row-level rollback occurs and
execution resumes with the next input row

 If you specify this hint when inserting data with DML error logging enabled,
then the unique key violation is not logged and does not cause statement
termination

INSERT /*+ IGNORE_ROW_ON_DUPKEY_INDEX(T,UC_T_TESTCOL)) */ INTO t

(testcol)

VALUES

(1);

6868

DBMS_ERRLOG (1:2)

 Provides a procedure that enables creating an error logging table so that DML
operations can continue after encountering errors rather than performing an
abort and rollback

 Tables with LONG, CLOB, BLOB, BFILE, and ADT data types are not
supported

 LOG ERRORS effectively it turns
array processing into single row
processing, so it adds an
expense at the moment of
inserting, even though it saves
you the overhead of an array
rollback if a duplicate gets
into the data (Jonathan Lewis)

CREATE TABLE t AS

SELECT *

FROM all_tables

WHERE 1=2;

ALTER TABLE t

ADD CONSTRAINT pk_t

PRIMARY KEY (owner, table_name)

USING INDEX;

ALTER TABLE t

ADD CONSTRAINT cc_t

CHECK (blocks < 11);

INSERT /*+ APPEND */ INTO t

SELECT *

FROM all_tables;

6969

DBMS_ERRLOG (2:2)

exec

dbms_errlog.create_error_log('T');

desc err$_t

INSERT /*+ APPEND */ INTO t

SELECT *

FROM all_tables

LOG ERRORS

REJECT LIMIT UNLIMITED;

SELECT COUNT(*) FROM t;

COMMIT;

SELECT COUNT(*) FROM t;

SELECT COUNT(*) FROM err$_t;

set linesize 121

col table_name format a30

col blocks format a7

col ora_err_mesg$ format a60

SELECT ora_err_mesg$, table_name,

blocks

FROM err$_t;

7070

DBMS_STATS: Statistics

 System Stats

 Fixed Object Stats

 Dictionary Stats

 Set stats for new partitions
so that when inserts take
place the optimizer knows
what you are inserting

SQL> exec dbms_stats.gather_system_stats('INTERVAL', 15);

SQL> SELECT * FROM sys.aux_stats$;

SNAME PNAME PVAL1 PVAL2

--------------- --------------- ---------- -----------------

SYSSTATS_INFO STATUS COMPLETED

SYSSTATS_INFO DSTART 05-27-2015 09:45

SYSSTATS_INFO DSTOP 05-27-2015 09:51

SYSSTATS_INFO FLAGS 0

SYSSTATS_MAIN CPUSPEEDNW 3010

SYSSTATS_MAIN IOSEEKTIM 10

SYSSTATS_MAIN IOTFRSPEED 4096

SYSSTATS_MAIN SREADTIM 3.862

SYSSTATS_MAIN MREADTIM 1.362

SYSSTATS_MAIN CPUSPEED 2854

SYSSTATS_MAIN MBRC 17

SYSSTATS_MAIN MAXTHR

SYSSTATS_MAIN SLAVETHR

7171

DBMS_STATS: Processing Rate (1:2)

 Processing Rate collection is new as of version 12cR1

 Besides the amount of work the optimizer also needs to know the HW
characteristics of the system to understand how much time is needed to
complete that amount of work

 Consequently, the HW characteristics describe how much work a single
process can perform on that system, these are expressed as bytes per second
and rows per second and are called processing rates

 As they indicate a system's capability it means you will need fewer processes
(which means less DOP) for the same amount of work as these rates go
higher; the more powerful a system is, the less resources you need to process
the same statement in the same amount of time

 Processing rates are collected manually
SQL> exec dbms_stats.gather_processing_rate('START', 20);

SQL> SELECT operation_name, manual_value, calibration_value, default_value

2 FROM v$optimizer_processing_rate

3 ORDER BY 1;

7272

DBMS_STATS: Processing Rate (2:2)

OPERATION_NAME MANUAL_VAL CALIBRATIO DEFAULT_VA

------------------------- ---------- ---------- ----------

AGGR 1000.00000

ALL 200.00000

CPU 200.00000

CPU_ACCESS 200.00000

CPU_AGGR 200.00000

CPU_BYTES_PER_SEC 1000.00000

CPU_FILTER 200.00000

CPU_GBY 200.00000

CPU_HASH_JOIN 200.00000

CPU_IMC_BYTES_PER_SEC 2000.00000

CPU_IMC_ROWS_PER_SEC 2000000.00

CPU_JOIN 200.00000

CPU_NL_JOIN 200.00000

CPU_RANDOM_ACCESS 200.00000

CPU_ROWS_PER_SEC 1000000.00000

CPU_SEQUENTIAL_ACCESS 200.00000

CPU_SM_JOIN 200.00000

CPU_SORT 200.00000

HASH 200.00000

IO 200.00000

IO_ACCESS 200.00000

IO_BYTES_PER_SEC 200.00000

IO_IMC_ACCESS 1000.00000

IO_RANDOM_ACCESS 200.00000

IO_ROWS_PER_SEC 1000000.00000

IO_SEQUENTIAL_ACCESS 200.00000

MEMCMP 500.00000

MEMCPY 1000.00000

SQL> exec dbms_stats.set_processing_rate('IO', 100);

7373

INSERT Statement Most Common Error

 If you do not name columns DDL can break your statement and not doing so
will use a less efficient code path

INSERT INTO <table_name>

(<comma_separated_column_name_list>)

VALUES

(<comma_separated_value_list>);

CREATE TABLE state (

state_abbrev VARCHAR2(2),

state_name VARCHAR2(30),

city_name VARCHAR2(30));

INSERT INTO state

(state_abbrev, state_name)

VALUES

('NY', 'New York');

INSERT INTO state

VALUES

('NY', 'New York');

74

Wrap Up

7575

Conclusion

 How comfortable are you with your knowledge of UPDATE and DELETE
statements?

 The most important principle in INSERT statements, and everything else in
Oracle is "do the least work"

 Minimize CPU utilization

 Minimize I/O

 Take the load off the storage array

 Off the HBA cards

 Off the SAN switch

 Off the Fibre

 Minimize network utilization

 Bandwidth

 Round Trips

 Minimize your memory footprint

76

*

ERROR at line 1:

ORA-00028: your session has been killed

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorgan11g
twitter: @meta7solutions

Thank You

