
1

Oracle Database Performance Tuning:

The Not SQL Option

Monday: 9 November, 2015

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorgan11g

2

Introduction

33

Topics (1:2)

 Guessing

 Blade Servers

 I/O

 Memory Allocation

 Swapiness

 Virtual Machines

 Storage

 SQL Optimization

 Performance Tuning Tools

44

Dan Morgan

 Never worked for Oracle

 Oracle ACE Director

 More than 45 years technology experience

 First computer was an IBM 360/40 mainframe in 1970

 Fortran IV and Punch Cards

 Curriculum author and primary Oracle instructor at University of Washington

 Guest lecturer on Oracle at Harvard University

 Decades of hands-on SQL, PL/SQL, and DBA experience

 The "Morgan" behind Morgan's Library on the web
www.morganslibrary.org

 10g, 11g, and 12c Beta tester

 Co-Founder Intl. GoldenGate Oracle Users Group

 Contact email: dmorgan@forsythe.com

55

My Websites: Morgan's Library

66

Why Meta7

 The Oracle Only division of Forsythe dedicated to the Oracle Red Stack

 Highly skilled consultants

 Extensive experience across multiple industries

 Focusing on

 Core database performance, stability, security, HA

 Data Integration products

 GoldenGate

 Oracle Data Integrator

 Engineered systems

 Reliable on-time and on-budget delivery

 A professional and agile team of Oracle technical experts

 New, State of the Art Technology Evaluation Center

 Secure hosting and Managed Services in our own Tier 3 data center

 Flexible financial support

77

OpenWorld 2015 Road Show

For an invitation send an email to dpanos@forsythe.com

88

Travel Log: 2014

99

Content Density Warning

Take Notes ... Ask Questions

10

Mythology + Methodology

1111

I’ll close up with an observation I made recently regarding questions about Oracle Database. In my experience

answering these questions, I’ve come to realize that there are really only five questions about the database.

The answer to the first three questions is “use bind variables.”

The answer to the fourth question is “do not use bind variables.”

The answer to the fifth question is “it depends.”

If you know those five answers, you can answer any question about the database!

Actually, if you just remember the answer to question number five—“it depends”—you can answer any

question.

That is probably the most important thing I’ve learned in almost 30 years in IT: there is no single “best” way,

there is no single ‘best’ approach for every problem. The real challenge in IT is not learning the best way, but

rather learning as many ways as you can and learning how to evaluate which way is best given your current

circumstances. I’m looking forward to interacting with the Oracle community going forward through future writing

efforts, and I fully intend for those efforts to help you find the right ways.

Wisdom From Tom Kyte

1212

The #1 Database Performance Tuning Mythology

This was from the worst performing Oracle Database I've seen since 2006

1313

The #1 Database Performance Tuning Methodology

Guessing

1414

BAAG Comrades

Christian Antognini

Karl Arao

Mark Bobak

Ronald Bradford

Wolfgang Breitling

Doug Burns

Andrew Clarke

Randolf Geist

Alex Gorbachev

Marco Gralike

Frits Hoogland

John Hurley

Anjo Kolk

David Kurtz

Jonathan Lewis

Robyn Sands

Jared Still

Jeremiah Wilton

BAAG Membership

1515

BAAG Comrades

1616

Clearly

 No surprise ... I do not endorse guessing

 Possibly a big surprise ... I do not like normal AWR reports

 I think the solutions to every performance issue is an Exadata

 And I am not attracted to all the tools with pretty GUIs

 So let us take a deep dive into performance tuning and address the root cause
of the majority of issues I see in my work

 We will focus on what fixes all issues ... not just one issue

 We all know that 30+ years of doing it the way we have been

 DBMS_SUPPORT introduced with version 7.2

 DBMS_TRACE introduced with version 8.1.5

 DBMS_MONITOR introduced with version 10.1

 10053 and 10046 traces and TKPROF

has not eliminated tuning problems

1717

What Affects Performance

 Hardware

 Servers Resources

 CPU

 Memory

 Bus Bandwidth and Latency

 Storage Subsystems

 Networks

 Software

 Operating System Configuration

 Virtual Machines

 Drivers

 Database

 Memory Allocation

 Optimizer Configuration

 SQL Quality

 Application

 Web Servers

 Application Servers

 Middleware Caching

 Application Code Quality

Let's focus on what is

important

but not on the radar

1818

Hardware

 Servers and Operating Systems

 Blade Servers

 I/O Cards

 NUMA Architecture

 HugePages

 Swapiness

 Virtual Machines

 Storage

 Controllers

 Read-Write Caches

 LUN Size and Layout

 Networks

 TCP/IP

 UDP

1919

Blade Servers (1:2)

 Suitable for web and application servers

 Possibly usable for small databases

 A meltdown waiting to happen with RAC

RAC: Frequently Asked Questions (Doc ID 220970.1)

Cluster interconnect network separation can be satisfied either by using standalone, dedicated switches, which provide the highest degree of

network isolation, or Virtual Local Area Networks defined on the Ethernet switch, which provide broadcast domain isolation between IP

networks. VLANs are fully supported for Oracle Clusterware interconnect deployments. Partitioning the Ethernet switch with VLANs allows for:

- Sharing the same switch for private and public communication.

- Sharing the same switch for the private communication of more than one cluster.

- Sharing the same switch for private communication and shared storage access.

The following best practices should be followed:

The Cluster Interconnect VLAN must be on a non-routed IP subnet.

All Cluster Interconnect networks must be configured with non-routed IPs. The server-server communication should be single hop

through the switch via the interconnect VLAN. There is no VLAN-VLAN communication.

Oracle recommends maintaining a 1:1 mapping of subnet to VLAN.

The most common VLAN deployments maintain a 1:1 mapping of subnet to VLAN. It is strongly recommended to avoid multi-subnet mapping to

a single VLAN. Best practice recommends a single access VLAN port configured on the switch for the cluster interconnect VLAN. The server

side network interface should have access to a single VLAN.

2020

Blade Servers (2:2)

 Blade servers, of which Cisco UCS is but one example,
do not have sufficient independent network cards to
avoid the networking becoming a single point of failure

 It is good when the public interface has a "keep alive"
enabled but this is a fatal flaw for the cluster
interconnect as fail-over will be delayed

 When different types of packets, public, storage, and interconnect are mixed
low-level diagnostics are difficult ... if not impossible

 When different types of packets, public, storage, and interconnect are mixed
the latency of one is the latency of all

 Traffic from any one blade can impact all blades
Troubleshooting gc block lost and Poor Network Performance in a RAC Environment (Doc ID 563566.1)

6. Interconnect LAN non-dedicated

Description: Shared public IP traffic and/or shared NAS IP traffic, configured on the interconnect LAN will result in degraded

application performance, network congestion and, in extreme cases, global cache block loss.

Action: The interconnect/clusterware traffic should be on a dedicated LAN defined by a non-routed subnet. Interconnect traffic should be

isolated to the adjacent switch(es), e.g. interconnect traffic should not extend beyond the access layer switch(es) to which the links are attached.

The interconnect traffic should not be shared with public or NAS traffic. If Virtual LANs (VLANS) are used, the interconnect should be on a

single, dedicated VLAN mapped to a dedicated, non-routed subnet, which is isolated from public or NAS traffic.

2121

I/O (1:3)

 Not all HBA cards are the same

 NIC cards vary widely in capabilities and performance

 TCP/IP Off-loading

 Kernel Optimization of the TCP/IP stack

--enable TCP kernel auto-tuning

/proc/sys/net/ipv4/tcp_moderate_rcvbuf (1=on)

-- tune TCP max memory: tune to 2xBDP (Bandwidth x Delay Product)

-- For example, with 40 Mbits/sec bandwidth, 25 msec delay,

-- BDP = (40 x 1000 / 8 Kbytes/sec) x (0.025 sec) ~ 128 Kbytes

/proc/sys/net/ipv4/tcp_rmem and tcp_wmem 4096 87380 174760

-- tune the socket buffer sizes by setting to 2xBDP

/proc/sys/net/core/rmem_max and wmem_max

-- ensure that TCP Performance features are enabled

/proc/sys/net/ipv4/tcp_sack

/proc/sys/net/ipv4/tcp_window_scaling

/proc/sys/net/ipv4/tcp_timestamps

-- additionally be sure NIC cards have TCP off-loading capability

2222

I/O (2:3)

 Optimize Data Guard

--sqlnet.ora

NAMES.DIRECTORY_PATH= (TNSNAMES, EZCONNECT)

DEFAULT_SDU_SIZE=32767

-- listener.ora

DGLOGSHIPB =

(DESCRIPTION =

(SDU = 32767)

(SEND_BUF_SIZE=9375000)

(RECV_BUF_SIZE=9375000)

(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST =

10.0.7.2)(PORT = 1526))

)

(CONNECT_DATA =

(SERVICE_NAME = prodb)

)

)

more examples: www.morganslibrary.org/reference/data_guard.html

2323

I/O (3:3)

 Optimize for RAC

 Read the Oracle installation documents with very careful attention to the advice given for
kernel parameters

 If on Linux and you don't know what rmem and wmem are ... read the docs

 If on Solaris and you don't know what rsize and wsize are ... read the docs?

2424

NUMA Memory Allocation

 Non-Uniform Memory Access

 A memory design used in multiprocessing, where the memory access time depends on the
memory location relative to the processor

 A processor can access its own local memory faster than non-local memory

 The benefits of NUMA are limited to particular workloads, notably on servers where the
data are often associated strongly with certain tasks or users

Diagram Source: Wikipedia

2525

[root@hc1pl-oda01 etc]# numactl --hardware

available: 1 nodes (0)

node 0 size: 262086 MB

node 0 free: 113558 MB

node distances:

node 0

0: 10

[root@hc1pl-oda01 etc]# numactl --show

policy: default

preferred node: current

physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47

cpubind: 0

nodebind: 0

membind: 0

Detect NUMA Usage

more examples: www.morganslibrary.org/reference/numa.html

[dmorgan@lxorap1n5 ~]$ numactl --hardware

available: 2 nodes (0-1)

node 0 size: 48457 MB

node 0 free: 269 MB

node 1 size: 48480 MB

node 1 free: 47 MB

node distances:

node 0 1

0: 10 20

1: 20 10

[dmorgan@lxorap1n5 ~]$ numactl --show

policy: default

preferred node: current

physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

cpubind: 0 1

nodebind: 0 1

membind: 0 1

NUMA Not Configured on an ODA

NUMA Configured

2626

Is Your Database NUMA Aware?

SQL> SELECT a.ksppinm PNAME, c.ksppstvl PVAL, a.ksppdesc PDESC

2 FROM x$ksppi a, x$ksppcv b, x$ksppsv c

3 WHERE a.indx = b.indx

4 AND a.indx = c.indx

5 AND LOWER(a.ksppinm) LIKE '%numa%'

6* ORDER BY 1;

PNAME PVAL PDESC

-------------------------- -------------- ---

_NUMA_instance_mapping Not specified Set of nodes that this instance should run on

_NUMA_pool_size Not specified aggregate size in bytes of NUMA pool

_db_block_numa 1 Number of NUMA nodes

_enable_NUMA_interleave TRUE Enable NUMA interleave mode

_enable_NUMA_optimization FALSE Enable NUMA specific optimizations

_enable_NUMA_support FALSE Enable NUMA support and optimizations

_numa_buffer_cache_stats 0 Configure NUMA buffer cache stats

_numa_shift_enabled TRUE Enable NUMA shift

_numa_shift_value 0 user defined value for numa nodes shift

_numa_trace_level 0 numa trace event

_px_numa_stealing_enabled TRUE enable/disable PQ granule stealing across NUMA nodes

_px_numa_support_enabled FALSE enable/disable PQ NUMA support

_rm_numa_sched_enable FALSE Is Resource Manager (RM) related NUMA scheduled

policy enabled

_rm_numa_simulation_cpus 0 number of cpus for each pg for numa simulation in

resource mgr

_rm_numa_simulation_pgs 0 number of PGs for numa simulation in resource manager

more examples: www.morganslibrary.org/reference/numa.html

2727

Enable Database NUMA Support

more examples: www.morganslibrary.org/reference/numa.html

conn / as sysdba

ALTER SYSTEM SET "_enable_NUMA_support" = TRUE

COMMENT= 'NUMA Support Enabled 15-Mar-2015'

CONTAINER=ALL

SCOPE=SPFILE

SID='*';

2828

HugePages

 Also known as "Large Memory Pages" or just "Large Pages"

 Each page table entry represents a “virtual to physical” translation of a
process’s memory

 Can be as large as 64 KB in size per entry

 Can be huge for large memory systems

 See PageTables in /proc/meminfo

 As large a 1.5 GB

 The entire SGA must fit inside the HugePages

 If it does not fit ... then none of it will use the HugePage memory

 You will essentially have walled your database off from using a large portion of the server's
memory

2929

Swapiness

 Swapping (aka Paging)

 In a sense the operating system's version of the Oracle Temp tablespace

 In older versions of the ODA swapiness was set at 0 (a bad idea) and with the
X5-2 has been set at 100 (an equally bad idea)

Value Strategy

vm.swapiness=0 The kernel will swap only to avoid an out of memory condition

vm.swapiness=60 The default value

vm.swapiness=100 The kernel will swap aggressively

3030

Virtual Machines

 Leave sufficient cpu resources for the bare-metal operating system to perform
I/O and manage network traffic

 Disable interrupt coalescing

 Disable chipset power management

 Read the docs http://www.vmware.com/pdf/Perf_Best_Practices_vSphere5.0.pdf

 VMs on NUMA machines should be configured to enhance memory allocation

 This example is from vSphere where 0 and 1 are the processor sockets

numa.nodeAffinity=0,1

3131

Storage Hardware

 Storage

 Spinning Disk

 Solid State Devices

 Controllers

 SAN Switches

3232

Storage Heat Map

3333

Storage Layout

LUN 204

LUN 200

LUN 205

LUN 208

LUN 74

LUN 94

LUN 81

LUN 78

LUN 101

LUN 57

LUN 123

LUN 82

LUN 77

LUN 35

LUN 92 LUN 62 LUN 106 LUN 107 LUN 51

LUN 102

LUN 105

LUN 49

LUN 104

LUN 53

LUN 58 LUN 47 LUN 126 LUN 103 LUN 85

LUN 206

LUN 124

LUN 130

LUN 84

LUN 43

LUN 44 LUN 56 LUN 45 LUN 67 LUN 14

LUN 17

LUN 30

LUN 19

LUN 88

LUN 207

LUN 26 LUN 8 LUN 2 LUN 4 LUN

LUN 1

LUN 1

LUN 1

LUN 1

LUN 1 LUN 5 LUN 6 LUN 5

LUN

LUN

LUN

LUN

LUN LUN LUN LUN

LUN

LUN

LUN

LUN

LUN LU LU LU

LUN

LUN

LUN

LUN

LU LU LU LU

LU

LU

LU

LU

L L L L

L

L

L

L L L

L

L

L

L

L
L
L

c0vmware01p, c0vmware...

c0vmware02p, c0vmware...

c0ora01p

c0odsrac01p, c0odsrac02p

c0ods04p

c0orarac01p, c0orarac...

c0visdb03p, c0visdb04p

c0orademand01p

c0vmware13p, c0vmware...

c0file01p, c0file02p,...

c0visrptdb01p

c0baltimore01p

c0ws01p, c0ws02p

c0orademand02t

3434

In-Object Space Wastage (1:6)

 By default the Oracle Database wastes 10% of all the storage you allocate to it
SQL> SELECT owner, pct_free, count(*)

2 FROM dba_tables

3 WHERE pct_free IS NOT NULL

3 GROUP BY owner, pct_free

4* ORDER BY 1,2;

OWNER PCT_FREE COUNT(*)

-------------------- ---------- ----------

APEX_040200 0 2

APEX_040200 10 450

CTXSYS 0 16

CTXSYS 10 37

DBSNMP 0 1

DBSNMP 10 19

DVSYS 10 34

GSMADMIN_INTERNAL 0 5

GSMADMIN_INTERNAL 10 14

LBACSYS 10 22

MDSYS 10 130

ORDDATA 10 90

SYS 0 90

SYS 1 15

SYS 10 1105

SYSTEM 0 1

SYSTEM 10 131

WMSYS 0 16

WMSYS 10 24

XDB 10 28

XDB 99 1

Block Header

Free Space (Default 10%)

Row Data

General Block Information

(Block add, Segment type)

85 ~ 100 bytes

Table info in Cluster

Row info in Block

(2 byte per row)

Used when a row is

inserted or updated

(pctfree, pctused)

Table or Index Data

Table Dictionary

Row Dictionary

3535

In-Object Space Wastage (2:6)

 Within file systems space may not be allocated efficiently to data files

 Within data files space may not be allocated efficiently to segments

 Within segment extents space may not be allocated efficiently too

 In the preceding example, assuming 10% free space and 90 rows per block

 Reading 89 rows requires reading 8K

 Reading 91 rows requires reading 16K

 Without the pctfree loss reading 91-100 rows would still require only 8K of I/O

 With the free space at 10% reading 200 rows requires reading 3 x 8K

 With the free space at 0% reading 200 rows saves 1/3 of the I/O

 Know your systems well enough to know if you can eliminate the pct free value

3636

In-Object Space Wastage (3:6)

 Online segments can be shrunk using a variety of technologies

 DBMS_REDEFINITION

 DBMS_SPACE

 DDL

TABLE

HEADER 01010101

11011010

11001101

00001101 10111101

11001101

10101111

11101101

0000110110111101

High Water Mark

TABLE

HEADER 11001101

00001101

11001101

10101111

11101101

00001101

11001101

10101111

11101101

00001101

High Water Mark Free Space

Free Space

SQL> ALTER TABLE servers ENABLE ROW MOVEMENT;

SQL> ALTER TABLE servers SHRINK SPACE CASCADE;

3737

 DBMS_SPACE Built-In Package

 Fully documented and supported

 FREE_BLOCKS

 SPACE_USAGE

 UNUSED_SPACE

 VERIFY_SHRINK_CANDIDATE

 VERIFY_SHRINK_CANDIDATE_TBF

In-Object Space Wastage (4:6)

3838

 No wastage

In-Object Space Wastage (5:6)

SQL> DECLARE

2 uf NUMBER;

3 ub NUMBER;

4 f1 NUMBER;

5 f1b NUMBER;

6 f2 NUMBER;

7 f2b NUMBER;

8 f3 NUMBER;

9 f3b NUMBER;

10 f4 NUMBER;

11 f4b NUMBER;

12 fbl NUMBER;

13 fby NUMBER;

14 BEGIN

15 dbms_space.space_usage('UWCLASS','SERVERS', 'TABLE', uf, ub, f1, f1b, f2, f2b, f3, f3b, f4, f4b, fbl, fby);

16

17 dbms_output.put_line('unformatted blocks: ' || TO_CHAR(uf));

18 dbms_output.put_line('unformatted bytes: ' || TO_CHAR(ub));

19 dbms_output.put_line('blocks 0-25% free: ' || TO_CHAR(f1));

20 dbms_output.put_line('bytes 0-25% free: ' || TO_CHAR(f1b));

21 dbms_output.put_line('blocks 25-50% free: ' || TO_CHAR(f2));

22 dbms_output.put_line('bytes 25-50% free: ' || TO_CHAR(f2b));

23 dbms_output.put_line('blocks 50-75% free: ' || TO_CHAR(f3));

24 dbms_output.put_line('bytes 50-75% free: ' || TO_CHAR(f3b));

25 dbms_output.put_line('blocks 75-100% free: ' || TO_CHAR(f4));

26 dbms_output.put_line('bytes 75-100% free: ' || TO_CHAR(f4b));

27 dbms_output.put_line('full blocks: ' || TO_CHAR(fbl));

28 dbms_output.put_line('full bytes: ' || TO_CHAR(fby));

29 END;

30 /

unformatted blocks: 0

unformatted bytes: 0

blocks 0-25% free: 0

bytes 0-25% free: 0

blocks 25-50% free: 0

bytes 25-50% free: 0

blocks 50-75% free: 0

bytes 50-75% free: 0

blocks 75-100% free: 0

bytes 75-100% free: 0

full blocks: 2

full bytes: 16384

3939

 Minor wastage

In-Object Space Wastage (6:6)

SQL> DECLARE

2 uf NUMBER;

3 ub NUMBER;

4 f1 NUMBER;

5 f1b NUMBER;

6 f2 NUMBER;

7 f2b NUMBER;

8 f3 NUMBER;

9 f3b NUMBER;

10 f4 NUMBER;

11 f4b NUMBER;

12 fbl NUMBER;

13 fby NUMBER;

14 BEGIN

15 dbms_space.space_usage('XDB','X$QN40ORNNWS4T9IVANV2GK293AFHS', 'TABLE', uf, ub, f1, f1b, f2, f2b, f3, f3b, f4, f4b, fbl, fby);

16

17 dbms_output.put_line('unformatted blocks: ' || TO_CHAR(uf));

18 dbms_output.put_line('unformatted bytes: ' || TO_CHAR(ub));

19 dbms_output.put_line('blocks 0-25% free: ' || TO_CHAR(f1));

20 dbms_output.put_line('bytes 0-25% free: ' || TO_CHAR(f1b));

21 dbms_output.put_line('blocks 25-50% free: ' || TO_CHAR(f2));

22 dbms_output.put_line('bytes 25-50% free: ' || TO_CHAR(f2b));

23 dbms_output.put_line('blocks 50-75% free: ' || TO_CHAR(f3));

24 dbms_output.put_line('bytes 50-75% free: ' || TO_CHAR(f3b));

25 dbms_output.put_line('blocks 75-100% free: ' || TO_CHAR(f4));

26 dbms_output.put_line('bytes 75-100% free: ' || TO_CHAR(f4b));

27 dbms_output.put_line('full blocks: ' || TO_CHAR(fbl));

28 dbms_output.put_line('full bytes: ' || TO_CHAR(fby));

29 END;

30 /

unformatted blocks: 0

unformatted bytes: 0

blocks 0-25% free: 0

bytes 0-25% free: 0

blocks 25-50% free: 0

bytes 25-50% free: 0

blocks 50-75% free: 1

bytes 50-75% free: 8192

blocks 75-100% free: 2

bytes 75-100% free: 16384

full blocks: 2

full bytes: 16384

4040

Other Object Optimizations

 Oracle's default tablespace settings waste disk and create unnecessary I/O

 Often a smallfile tablespace is a bad choice

 Default table creations are almost always inefficient

 Often heap tables are a bad choice

 Not every index should be a default B*Tree

 And poor choices lead to poor performance

 Oracle sequence object defaults are almost always inefficient

 A default cache size of 20 is a bad choice essentially all of the time

 The vast majority of PL/SQL I see written would have been valid in version
7.3.4

 Constants declared as variables

 Poor choices of data types

 Non-use of FORALL syntax

 Oracle optimizes data dictionary performance by clustering tables ... do you?

4141

I'm Not Afraid To Show You Mine

4242

Page One

4343

Page Two

4444

Page Three

4545

Page Four

4646

Page Five

4747

Optimizer Plans (1:4)

SELECT DISTINCT E1_2.OBJECT_ID

FROM PMCM.ELEMENT_DETAIL E1_1, PMCM.ELEMENT_DETAIL E1_2, PMCM.MARK_NETW_HIERARCHY H1,

PMCM.ELEMENT_DETAIL E2_1, PMCM.ELEMENT_DETAIL E2_2, PMCM.MARK_NETW_HIERARCHY H2

WHERE E1_1.OBJECT_ID = H1.PARENT_ID

AND E1_2.OBJECT_ID = H1.OBJECT_ID

AND E2_1.OBJECT_ID = H2.PARENT_ID

AND E2_2.OBJECT_ID = H2.OBJECT_ID

AND E1_1.CURRENT_IND = 'Y' AND E2_1.CURRENT_IND = 'Y'

AND E2_1.CURRENT_IND = 'Y' AND E2_2.CURRENT_IND = 'Y'

AND H1.CURRENT_IND = 'Y' AND H2.CURRENT_IND = 'Y'

AND H1.HIERARCHY_TYPE = 'NETWORK' AND H2.HIERARCHY_TYPE = 'NETWORK'

AND H1.PARENT_TYPE IN ('BSC','RNC') AND H2.PARENT_TYPE IN ('BSC','RNC')

AND E2_2.ELEMENT_TYPE = 'CELL' AND E1_2.ELEMENT_TYPE = 'CELL'

AND H1.PARENT_TYPE IN ('BSC','RNC')

AND E1_1.ELEMENT_NAME = E2_1.ELEMENT_NAME

AND E1_1.ELEMENT_ID = E2_1.ELEMENT_ID

AND E1_2.ELEMENT_NAME = E2_2.ELEMENT_NAME

AND E1_2.ELEMENT_ID = E2_2.ELEMENT_ID

AND E1_2.USEID LIKE '*%' AND E2_2.USEID NOT LIKE '*%';

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time | Pstart| Pstop |

| 0 | SELECT STATEMENT | | 1 | 78 | | 74M (40)| 50:54:42 | | |

| 1 | TEMP TABLE TRANSFORMATION | | | | | | | | |

| 2 | LOAD AS SELECT | | | | | | | | |

| 3 | PARTITION RANGE ALL | | 22M| 1111M| | 38153 (11)| 00:01:34 | 1 | 29 |

|* 4 | TABLE ACCESS FULL | ELEMENT_DETAIL | 22M| 1111M| | 38153 (11)| 00:01:34 | | |

| 5 | LOAD AS SELECT | | | | | | | | |

| 6 | PARTITION HASH ALL | | 337K| 9231K| | 3514 (15)| 00:00:09 | 1 | 16 |

|* 7 | TABLE ACCESS FULL | MARK_NETW_HIERARCHY | 337K| 9231K| | 3514 (15)| 00:00:09 | | |

| 8 | SORT AGGREGATE | | 1 | 78 | | | | | |

|* 9 | HASH JOIN | | 927G| 65T| 534M| 74M (40)| 50:53:00 | | |

| 10 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 11 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485F_6A66C42E | 22M| 1111M| | 16808 (12)| 00 | | |

|* 12 | HASH JOIN | | 21G| 1272G| 534M| 1616K (43)| 01:06:04 | | |

| 13 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 14 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485F_6A66C42E | 22M| 1111M| | 16808 (12)| 0 | | |

|* 15 | HASH JOIN | | 476M| 23G| 524M| 97327 (22)| 00:03:59 | | |

|* 16 | HASH JOIN | | 10M| 401M| 8704K| 34520 (10)| 00:01:25 | | |

|* 17 | HASH JOIN | | 234K| 5948K| 8256K| 783 (10)| 00:00:02 | | |

| 18 | VIEW | | 337K| 4286K| | 142 (14)| 00:00:01 | | |

| 19 | TABLE ACCESS FULL | SYS_TEMP_0FDA74860_6A66C42E | 337K| 3956K| | 142 (14)| 00:00:01 | | |

| 20 | VIEW | | 337K| 4286K| | 142 (14)| 00:00:01 | | |

| 21 | TABLE ACCESS FULL | SYS_TEMP_0FDA74860_6A66C42E | 337K| 3956K| | 142 (14)| 00:00:01 | | |

| 22 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 23 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485F_6A66C42E | 22M| 1111M| | 16808 (12)| 00:00:42 | | |

| 24 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 25 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485F_6A66C42E | 22M| 1111M| | 16808 (12)| 0 | | |

4848

Optimizer Plans (2:4)

--

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time | Pstart| Pstop |

--

| 0 | SELECT STATEMENT | | 1 | 78 | | 14T(100)|999:59:59 | | |

| 1 | TEMP TABLE TRANSFORMATION | | | | | | | | |

| 2 | LOAD AS SELECT | | | | | | | | |

| 3 | PARTITION RANGE ALL | | 22M| 1111M| | 38153 (11)| 00:01:34 | 1 | 29 |

|* 4 | TABLE ACCESS FULL | ELEMENT_DETAIL | 22M| 1111M| | 38153 (11)| 00:01:34 | | |

| 5 | LOAD AS SELECT | | | | | | | | |

| 6 | PARTITION HASH ALL | | 337K| 9231K| | 3514 (15)| 00:00:09 | 1 | 16 |

|* 7 | TABLE ACCESS FULL | MARK_NETW_HIERARCHY | 337K| 9231K| | 3514 (15)| 00:00:09 | | |

| 8 | SORT AGGREGATE | | 1 | 78 | | | | | |

| 9 | MERGE JOIN | | 471P| 15E| | 14T(100)|999:59:59 | | |

| 10 | MERGE JOIN | | 10P| 616P| | 694G (81)|999:59:59 | | |

| 11 | MERGE JOIN | | 231T| 10P| | 377G (64)|999:59:59 | | |

| 12 | SORT JOIN | | 334T| 11P| 28P| 377G (64)|999:59:59 | | |

| 13 | MERGE JOIN CARTESIAN| | 334T| 11P| | 140G (14)|999:59:59 | | |

|* 14 | HASH JOIN | | 989M| 23G| 534M| 96010 (38)| 00:03:56 | | |

| 15 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 16 | TABLE ACCESS FULL| SYS_TEMP_0FDA7485B_6A66C42E | 22M| 1111M| | 16808 (12)| 00:00:42 | | |

| 17 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 18 | TABLE ACCESS FULL| SYS_TEMP_0FDA7485B_6A66C42E | 22M| 1111M| | 16808 (12)| 00:00:42 | | |

| 19 | BUFFER SORT | | 337K| 4286K| | 140G (14)|999:59:59 | | |

| 20 | VIEW | | 337K| 4286K| | 142 (14)| 00:00:01 | | |

| 21 | TABLE ACCESS FULL| SYS_TEMP_0FDA7485C_6A66C42E | 337K| 3956K| | 142 (14)| 00:00:01 | | |

|* 22 | SORT JOIN | | 337K| 4286K| 12M| 844 (14)| 00:00:03 | | |

| 23 | VIEW | | 337K| 4286K| | 142 (14)| 00:00:01 | | |

| 24 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485C_6A66C42E | 337K| 3956K| | 142 (14)| 00:00:01 | | |

|* 25 | SORT JOIN | | 22M| 277M| 855M| 65084 (16)| 00:02:40 | | |

| 26 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 27 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485B_6A66C42E | 22M| 1111M| | 16808 (12)| 0 | | |

|* 28 | SORT JOIN | | 22M| 277M| 855M| 65084 (16)| 00:02:40 | | |

| 29 | VIEW | | 22M| 277M| | 16808 (12)| 00:00:42 | | |

| 30 | TABLE ACCESS FULL | SYS_TEMP_0FDA7485B_6A66C42E | 22M| 1111M| | 16808 (12)| 0 | | |

--

4949

Optimizer Plans (3:4)

WITH ed AS (SELECT object_id, element_id, element_name, element_type, useid

FROM pmcm.element_detail

WHERE element_type = 'CELL'

AND current_ind = 'Y'),

mnh AS (SELECT parent_id, object_id

FROM pmcm.mark_netw_hierarchy

WHERE current_ind = 'Y'

AND hierarchy_type = 'NETWORK'

AND parent_type IN ('BSC', 'RNC'))

SELECT COUNT(*)

FROM ed e1_1, ed e1_2, ed e2_1, ed e2_2, mnh h1, mnh h2

WHERE e1_1.object_id = h1.parent_id AND e1_2.object_id = h1.object_id

AND e2_1.object_id = h2.parent_id AND e2_2.object_id = h2.object_id

AND e1_1.element_name = e2_1.element_name

AND e1_1.element_id = e2_1.element_id

AND e1_2.element_name = e2_2.element_name

AND e1_2.element_id = e2_2.element_id

AND e1_2.useid LIKE '*%'

AND e2_2.useid NOT LIKE '*%';

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 214 | | 100K (6)| 00:04:08 |

| 1 | HASH UNIQUE | | 1 | 214 | | 100K (6)| 00:04:08 |

|* 2 | HASH JOIN | | 1 | 214 | 12M| 100K (6)| 00:04:08 |

| 3 | PARTITION HASH ALL | | 337K| 9231K| | 3514 (15)| 00:00:09 |

|* 4 | TABLE ACCESS FULL | MARK_NETW_HIERARCHY | 337K| 9231K| | 3514 (15)| 00:00:00 |

|* 5 | HASH JOIN | | 207K| 36M| 22M| 95860 (6)| 00:03:56 |

| 6 | PARTITION RANGE ALL | | 586K| 15M| | 16233 (2)| 00:00:40 |

| 7 | TABLE ACCESS BY LOCAL INDEX ROWID | ELEMENT_DETAIL | 586K| 15M| | 16233 | ??:??:?? |

|* 8 | INDEX SKIP SCAN | ED_ET_TECH_CI | 586K| | | 12791 (1)| 00:00:3? |

|* 9 | HASH JOIN | | 207K| 31M| 22M| 77982 (7)| 00:03:12 |

| 10 | PARTITION RANGE ALL | | 586K| 15M| | 16233 (2)| 00:00:40 |

| 11 | TABLE ACCESS BY LOCAL INDEX ROWID | ELEMENT_DETAIL | 586K| 15M| | 16233 | ??:??:?? |

|* 12 | INDEX SKIP SCAN | ED_ET_TECH_CI | 586K| | | 12791 (1)| 00:00:?? |

|* 13 | HASH JOIN | | 179K| 22M| 12M| 60372 (8)| 00:02:29 |

| 14 | PARTITION HASH ALL | | 337K| 9231K| | 3514 (15)| 00:00:09 |

|* 15 | TABLE ACCESS FULL | MARK_NETW_HIERARCHY | 337K| 9231K| | 3514 (15)| 00:00:?? |

|* 16 | HASH JOIN | | 184K| 17M| 10M| 55886 (8)| 00:02:18 |

| 17 | PARTITION RANGE ALL | | 184K| 9008K| | 37137 (8)| 00:01:32 |

|* 18 | TABLE ACCESS FULL | ELEMENT_DETAIL | 184K| 9008K| | 37137 (8)| 00:01:32 |

| 19 | PARTITION RANGE ALL | | 576K| 28M| | 17383 (8)| 00:00:43 |

|* 20 | TABLE ACCESS BY LOCAL INDEX ROWID| ELEMENT_DETAIL | 576K| 28M| | 17383 (8)| ??:??:?? |

|* 21 | INDEX SKIP SCAN | ED_ET_TECH_CI | 583K| | | 13939 (9)| 00:00:35 |

--

5050

Optimizer Plans (4:4)

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

| 0 | SELECT STATEMENT |

| | | | 264T(100)| |

|* 1 | VIEW |

| 156P| 15E| | 264T (79)|999:59:59 |

|* 2 | WINDOW SORT PUSHED RANK |

| 156P| 15E| 15E| 264T (79)|999:59:59 |
| 3 | MERGE JOIN CARTESIAN | | 156P| 15E| | 68T (16)|999:59:59 |

| 4 | MERGE JOIN CARTESIAN | | 220G| 205T| | 96M (16)| 26:57:48 |

| 5 | MERGE JOIN CARTESIAN | | 310K| 302M| | 232 (11)| 00:00:01 |

| 6 | MERGE JOIN CARTESIAN | | 779 | 777K| | 22 (0)| 00:00:01 |

| 7 | NESTED LOOPS | | | | | | |

| 8 | NESTED LOOPS | | 2 | 2044 | | 20 (0)| 00:00:01 |

| 9 | NESTED LOOPS OUTER | | 2 | 1990 | | 18 (0)| 00:00:01 |

| 10 | NESTED LOOPS | | 2 | 1868 | | 17 (0)| 00:00:01 |

| 11 | NESTED LOOPS | | 2 | 1712 | | 15 (0)| 00:00:01 |

| 12 | NESTED LOOPS | | 2 | 1564 | | 13 (0)| 00:00:01 |

| 13 | MERGE JOIN CARTESIAN | | 2 | 1442 | | 11 (0)| 00:00:01 |

| 14 | NESTED LOOPS OUTER | | 1 | 625 | | 8 (0)| 00:00:01 |

| 15 | NESTED LOOPS OUTER | | 1 | 613 | | 7 (0)| 00:00:01 |

| 16 | NESTED LOOPS | | 1 | 580 | | 6 (0)| 00:00:01 |

| 17 | NESTED LOOPS OUTER | | 1 | 539 | | 5 (0)| 00:00:01 |

| 18 | NESTED LOOPS OUTER | | 1 | 340 | | 5 (0)| 00:00:01 |

| 19 | TABLE ACCESS BY INDEX ROWID| PA_STUDENT | 1 | 316 | | 3 (0)| 00:00:01 |

|* 20 | INDEX UNIQUE SCAN | PK_STUDENT | 1 | | | 2 (0)| 00:00:01 |

| 21 | TABLE ACCESS BY INDEX ROWID| PA_STUD_USER | 1 | 24 | | 2 (0)| 00:00:01 |

|* 22 | INDEX UNIQUE SCAN | PK_STUD_USER | 1 | | | 1 (0)| 00:00:01 |

| 23 | TABLE ACCESS BY INDEX ROWID | PA_ORG | 1 | 199 | | 0 (0)| |

|* 24 | INDEX UNIQUE SCAN | PK_ORG | 1 | | | 0 (0)| |

| 25 | TABLE ACCESS BY INDEX ROWID | PA_DOMAIN | 13 | 533 | | 1 (0)| 00:00:01 |

|* 26 | INDEX UNIQUE SCAN | PK_DOMAIN | 1 | | | 0 (0)| |

| 27 | TABLE ACCESS BY INDEX ROWID | PA_USRRF_STUD | 100 | 3300 | | 1 (0)| 00:00:01 |

|* 28 | INDEX UNIQUE SCAN | PK_USRRF_STUD | 1 | | | 0 (0)| |

| 29 | VIEW PUSHED PREDICATE | PV_STUD_USER | 1 | 12 | | 1 (0)| 00:00:01 |

|* 30 | FILTER | | | | | | |

| 31 | NESTED LOOPS OUTER | | 1 | 22 | | 264 (11)| 00:00:01 |

|* 32 | INDEX UNIQUE SCAN | PK_STUDENT | 1 | 10 | | 2 (0)| 00:00:01 |

|* 33 | MAT_VIEW ACCESS FULL | PV_AP_STUD_USER | 1 | 12 | | 262 (11)| 00:00:01 |

| 34 | BUFFER SORT | | 2 | 192 | | 10 (0)| 00:00:01 |

| 35 | TABLE ACCESS BY INDEX ROWID | PA_CPNT_COMPLIANCE_DATA | 2 | 192 | | 3 (0)| 00:00:01 |

|* 36 | INDEX RANGE SCAN | IX_CPNT_CD__EVTHST | 2 | | | 1 (0)| 00:00:01 |

| 37 | TABLE ACCESS BY INDEX ROWID | PA_CPNT_TYPE | 1 | 61 | | 1 (0)| 00:00:01 |

|* 38 | INDEX UNIQUE SCAN | PK_CPNT_TYPE | 1 | | | 0 (0)| |

| 39 | TABLE ACCESS BY INDEX ROWID | PA_RQMT_TYPE | 1 | 74 | | 1 (0)| 00:00:01 |

|* 40 | INDEX UNIQUE SCAN | PK_RQMT_TYPE | 1 | | | 0 (0)| |

| 41 | TABLE ACCESS BY INDEX ROWID | PA_CMPL_STAT | 1 | 78 | | 1 (0)| 00:00:01 |

|* 42 | INDEX UNIQUE SCAN | PK_CMPL_STAT | 1 | | | 0 (0)| |

| 43 | TABLE ACCESS BY INDEX ROWID | PA_QUAL | 1 | 61 | | 1 (0)| 00:00:01 |

|* 44 | INDEX UNIQUE SCAN | PK_QUAL | 1 | | | 0 (0)| |

|* 45 | INDEX UNIQUE SCAN | PK_CPNT | 1 | | | 0 (0)| |

| 46 | TABLE ACCESS BY INDEX ROWID | PA_CPNT | 1 | 27 | | 1 (0)| 00:00:01 |

| 47 | BUFFER SORT | | 399 | | | 21 (0)| 00:00:01 |

| 48 | INDEX FAST FULL SCAN | PK_USRRF_STUD | 399 | | | 1 (0)| 00:00:01 |

| 49 | BUFFER SORT | | 399 | | | 231 (11)| 00:00:01 |

| 50 | INDEX FAST FULL SCAN | PK_USRRF_STUD | 399 | | | 0 (0)| |

| 51 | BUFFER SORT | | 710K| | | 96M (16)| 26:57:48 |

| 52 | INDEX FAST FULL SCAN | IX_STUD_USER__STUDENT | 710K| | | 309 (16)| 00:00:01 |

| 53 | BUFFER SORT | | 710K| | | 264T (79)|999:59:59 |

| 54 | INDEX FAST FULL SCAN | IX_STUD_USER__STUDENT | 710K| | | 309 (16)| 00:00:01 |

5151

Poorly Written Applications

 There's nothing wrong with the SQL ... but there is definitely something wrong

SELECT /*+ RESULT_CACHE */ srvr_id

FROM (

SELECT srvr_id, SUM(cnt) SUMCNT

FROM (

SELECT DISTINCT srvr_id, 1 AS CNT

FROM servers

UNION ALL

SELECT DISTINCT srvr_id, 1

FROM serv_inst)

GROUP BY srvr_id)

WHERE sumcnt = 2;

more examples: www.morganslibrary.org/reference/pkgs/dbms_result_cache.html

5252

Optimizer Settings

 Default Oracle install favors data warehouse not OLTP

SQL> show parameter optimizer_mode

NAME TYPE VALUE

------------------------------------ ----------- -------

--

optimizer_mode string

ALL_ROWS

SQL> ALTER SYSTEM SET OPTIMIZER_MODE='FIRST_ROWS_10';

System altered.

SQL> show parameter optimizer_mode

NAME TYPE VALUE

------------------------ ----------- --------------

optimizer_mode string FIRST_ROWS_10

NAME TYPE VALUE

------------------------------------ ----------- -------

optimizer_adaptive_features boolean TRUE

optimizer_adaptive_reporting_only boolean FALSE

optimizer_capture_sql_plan_baselines boolean FALSE

optimizer_dynamic_sampling integer 2

optimizer_features_enable string

12.1.0.2

optimizer_index_caching integer 0

optimizer_index_cost_adj integer 100

optimizer_mode string

ALL_ROWS

optimizer_secure_view_merging boolean TRUE

optimizer_use_invisible_indexes boolean FALSE

optimizer_use_pending_statistics boolean FALSE

optimizer_use_sql_plan_baselines boolean TRUE

Best for Data Warehouse

Best for OLTP

more examples: www.morganslibrary.org/reference/startup_parms.html

5353

Optimizer Statistics

 Gather System Stats

 Gather Fixed Object Stats

 Gather Dictionary Stats

 Gather Table Stats

 Gather Column Stats

 Gather Index Stats

 Gather Extended Stats

 Stat Generation

 Copy Stats

 Set Stats

 Fixing Stats

SQL> select type, count(*)

2 from v$fixed_table

3 group by type

4 order by 1;

TYPE COUNT(*)

----- ----------

TABLE 1144

VIEW 1261

SQL> select name

2 from v$fixed_table

3 where rownum < 11;

NAME

X$KQFTA

X$KQFVI

X$KQFVT

X$KQFDT

X$KQFCO

X$KQFOPT

X$KYWMPCTAB

X$KYWMWRCTAB

X$KYWMCLTAB

X$KYWMNF

more examples: www.morganslibrary.org/reference/system_stats.html

5454

Setting Optimizer Statistics

 Set database, schema, and table stats collection prefs

 Where WHERE clause predicates utilize more than a single table column
collect extended stats

SELECT dbms_stats.create_extended_stats(USER, 'SERV_INST', '(srvr_id, si_status)')

FROM dual;

exec dbms_stats.set_table_prefs(USER, 'SERVERS', 'ESTIMATE_PERCENT','90');

exec dbms_stats.set_table_prefs(USER, 'SERVERS', 'DEGREE','8');

more examples: www.morganslibrary.org/reference/pkgs/dbms_stats.html

5555

Manufacture Optimizer Statistics

 Creating a new table or partition?

 If you know approximately what will be in it when it is full set the statistics when you create
it

 If working in a DEV or TEST environment set or import stats to make these environments
"look" more like production

more examples: www.morganslibrary.org/reference/pkgs/dbms_stats.html

exec dbms_stats.set_table_stats(USER, 'EMP', numrows=>1000000, numblks=>10000, avgrlen=>74);

exec dbms_stats.set_index_stats(USER, 'ix_emp_deptno', numrows=>1000000, numlblks=>1000, numdist=>10000, clstfct=>1);

exec dbms_stats.set_column_stats(USER, 'emp', 'deptno', distcnt=>10000);

exec dbms_stats.set_table_stats(USER, 'dept', numrows=>100, numblks=>100);

Number of rows Number of blocks Clustering Factor

Average Row Length

Number of distinct values

Numerical Distribution

5656

Processing Rates (1:2)

 Besides the amount of work the optimizer also needs to know the HW
characteristics of the system to understand how much time is needed to
complete that amount of work

 Consequently, the HW characteristics describe how much work a single
process can perform on that system, these are expressed as bytes per second
and rows per second and are called processing rates

 As they indicate a system's capability it means you will need fewer processes
(which means less DOP) for the same amount of work as these rates go
higher; the more powerful a system is, the less resources you need to process
the same statement in the same amount of time

 Processing rates are collected manually

SQL> exec dbms_stats.gather_processing_rate('START', 20);

SQL> SELECT operation_name, manual_value, calibration_value, default_value

2 FROM v$optimizer_processing_rate

3 ORDER BY 1;

5757

Processing Rates (2:2)

OPERATION_NAME MANUAL_VAL CALIBRATIO DEFAULT_VA

------------------------- ---------- ---------- ----------

AGGR 1000.00000

ALL 200.00000

CPU 200.00000

CPU_ACCESS 200.00000

CPU_AGGR 200.00000

CPU_BYTES_PER_SEC 1000.00000

CPU_FILTER 200.00000

CPU_GBY 200.00000

CPU_HASH_JOIN 200.00000

CPU_IMC_BYTES_PER_SEC 2000.00000

CPU_IMC_ROWS_PER_SEC 2000000.00

CPU_JOIN 200.00000

CPU_NL_JOIN 200.00000

CPU_RANDOM_ACCESS 200.00000

CPU_ROWS_PER_SEC 1000000.00000

CPU_SEQUENTIAL_ACCESS 200.00000

CPU_SM_JOIN 200.00000

CPU_SORT 200.00000

HASH 200.00000

IO 200.00000

IO_ACCESS 200.00000

IO_BYTES_PER_SEC 200.00000

IO_IMC_ACCESS 1000.00000

IO_RANDOM_ACCESS 200.00000

IO_ROWS_PER_SEC 1000000.00000

IO_SEQUENTIAL_ACCESS 200.00000

MEMCMP 500.00000

MEMCPY 1000.00000

SQL> exec dbms_stats.set_processing_rate('IO', 100);

 Processing Rate collection is new as
of version 12cR1

58

Diagnostics

5959

Root Cause Analysis by Sophisticated Guessing

 Check data dictionary for collected stats

 Explain Plans

 Very few people can read them ... I will prove it next

 AWR Reports

 Data <> Information

 If you want value from AWR ... create AWR Difference reports with
DBMS_WORKLOAD_REPOSITORY.AWR_DIFF_REPORT_HTML

 ADDM Difference Reports

 ASH Reports

 SQL Tuning Advisor

 SQL Trace and TKPROF

 Baselines and Evolving Baselines

 DBMS_TRACE, DBMS_MONITOR, TRCSESS, TRACE ANALYZER,
SQLTXPLAIN

6060

Reading Explain Plans

 Very few people can read an explain plan

 Here are two plans from identical tables with identical stats

 Which one would you rely on?

SELECT srvr_id

FROM servers

INTERSECT

SELECT srvr_id

FROM serv_inst;
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 141 | 4560 | 6 (84)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE NOSORT | | 141 | 564 | 2 (50)|

| 3 | INDEX FULL SCAN | PK_SERVERS | 141 | 564 | 1 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 4 (25)|

| 5 | INDEX FAST FULL SCAN| IX_SERV_INST | 999 | 3996 | 3 (0)|

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | 141 | 4560 | 20 (10)|

| 1 | INTERSECTION | | | | |

| 2 | SORT UNIQUE | | 141 | 564 | 10 (10)|

| 3 | TABLE ACCESS FULL | SERVERS | 141 | 564 | 9 (0)|

| 4 | SORT UNIQUE | | 999 | 3996 | 10 (10)|

| 5 | TABLE ACCESS FULL | SERV_INST | 999 | 3996 | 9 (0)|

SQL> SELECT table_name, blocks

2 FROM user_tables

3* WHERE table_name IN ('SERVERS', 'SERV_INST');

TABLE_NAME BLOCKS

------------------------------ ----------

SERVERS 28

SERV_INST 28

Database 11gR2

Database 12gR1

The SQL Statement

more examples: www.morganslibrary.org/reference/explain_plan.html

6161

This Adds To The Confusion

SQL> SELECT blocks

2 FROM dba_tables

3 WHERE owner = 'UWCLASS'

4 AND table_name = 'SERVERS';

BLOCKS

28

SQL> SELECT blocks

2 FROM dba_segments

3 WHERE owner = 'UWCLASS'

4 AND segment_name = 'SERVERS';

BLOCKS

32

6262

This Makes It Even Worse
SQL> DECLARE

2 uf NUMBER;

3 ub NUMBER;

4 f1 NUMBER;

5 f1b NUMBER;

6 f2 NUMBER;

7 f2b NUMBER;

8 f3 NUMBER;

9 f3b NUMBER;

10 f4 NUMBER;

11 f4b NUMBER;

12 fbl NUMBER;

13 fby NUMBER;

14 BEGIN

15 dbms_space.space_usage('UWCLASS','SERVERS', 'TABLE', uf, ub, f1, f1b, f2, f2b, f3, f3b, f4, f4b, fbl, fby);

16

17 dbms_output.put_line('unformatted blocks: ' || TO_CHAR(uf));

18 dbms_output.put_line('unformatted bytes: ' || TO_CHAR(ub));

19 dbms_output.put_line('blocks 0-25% free: ' || TO_CHAR(f1));

20 dbms_output.put_line('bytes 0-25% free: ' || TO_CHAR(f1b));

21 dbms_output.put_line('blocks 25-50% free: ' || TO_CHAR(f2));

22 dbms_output.put_line('bytes 25-50% free: ' || TO_CHAR(f2b));

23 dbms_output.put_line('blocks 50-75% free: ' || TO_CHAR(f3));

24 dbms_output.put_line('bytes 50-75% free: ' || TO_CHAR(f3b));

25 dbms_output.put_line('blocks 75-100% free: ' || TO_CHAR(f4));

26 dbms_output.put_line('bytes 75-100% free: ' || TO_CHAR(f4b));

27 dbms_output.put_line('full blocks: ' || TO_CHAR(fbl));

28 dbms_output.put_line('full bytes: ' || TO_CHAR(fby));

29 END;

30 /

unformatted blocks: 16

unformatted bytes: 131072

blocks 0-25% free: 0

bytes 0-25% free: 0

blocks 25-50% free: 1

bytes 25-50% free: 8192

blocks 50-75% free: 0

bytes 50-75% free: 0

blocks 75-100% free: 11

bytes 75-100% free: 90112

full blocks: 0

full bytes: 0

only 12 blocks are formatted

more examples: www.morganslibrary.org/reference/pkgs/dbms_space.html

6363

AWR Difference Reports (1:5)

 SQL scripts located at $ORACLE_HOME/rdbms/admin

File Name Strategy

awrddrpi.sql Report on differences between differences between values recorded in two pairs of snapshots. This

script requests the user for the dbid and instance number of the instance to report on, for each snapshot

pair, before producing the standard report.

awrddrpt.sql Defaults the dbid and instance number to that of the current instance connected-to, then calls

awrddrpi.sql to produce the Compare Periods report.

awrextr.sql SQL/Plus script to help users extract data from the AWR.

awrgdrpi.sql RAC Version of Compare Period Report.

awrgdrpt.sql This script defaults the dbid to that of the current instance connected-to, defaults instance list to all

available instances and then calls awrgdrpi.sql to produce the Workload Repository RAC Compare

Periods report.

awrgrpt.sql This script defaults the dbid to that of the current instance connected-to, then calls awrgrpti.sql to

produce the Workload Repository RAC report.

awrgrti.sql SQL*Plus command file to report on RAC-wide differences between values recorded in two snapshots.

This script requests the user for the dbid before producing the standard Workload Repository report.

more examples: www.morganslibrary.org/reference/awr_report.html

6464

AWR Difference Reports (2:5)

 SQL scripts located at $ORACLE_HOME/rdbms/admin

more examples: www.morganslibrary.org/reference/awr_report.html

File Name Strategy

awrinfo.sql Outputs general AWR information such as the size, data distribution, etc. in AWR and SYSAUX. The

intended use of this script is for diagnosing abnormalities in AWR and not for diagnosing issues in the

database instance.

awrrpt.sql Defaults the dbid and instance number to that of the current instance connected-to, then calls awrrpti.sql

to produce the report.

awrrpti.sql SQL*Plus command file to report on differences between values recorded in two snapshots. This script

requests the user for the dbid and instance number of the instance to report on, before producing the

standard report.

awrsqrpi.sql SQL*Plus command file to report on differences between values recorded in two snapshots. This script

requests the user for the dbid, instance number and the sql id, before producing a report for a particular

sql statement in this instance.

awrsqrpt.sql Defaults the dbid and instance number to that of the current instance connected-to then calls

awrsqrpi.sql to produce a Workload report for a particular sql statement.

awrupd12.sql This script updates AWR data to version 12c. It only modifies AWR data that has been imported using

awrload.sql, or data from before changing the database DBID. In other words, it doesn't modify AWR

data for the local, active DBID.

6565

AWR Difference Reports (3:5)

more examples: www.morganslibrary.org/reference/awr_report.html

6666

AWR Difference Reports (4:5)

more examples: www.morganslibrary.org/reference/awr_report.html

6767

AWR Difference Reports (5:5)

more examples: www.morganslibrary.org/reference/awr_report.html

6868

DBMS_ADDM

 COMPARE_DATABASES new in Database 12c

 Create a report comparing the performance of a database over two different time periods

or the performance of two different databases over two different time periods

 COMPARE_INSTANCES new in Database 12c

 Create a report comparing the performance of a single instance over two different

time periods or the performance of two different instances over two different time periods

dbms_addm.compar_databases(

base_dbid IN NUMBER,

base_begin_snap_id IN NUMBER,

base_end_snap_id IN NUMBER,

comp_dbid IN NUMBER,

comp_begin_snap_id IN NUMBER,

comp_end_snap_id IN NUMBER,

report_type IN VARCHAR2 := 'HTML')

RETURN CLOB

dbms_addm.compare_instances(

base_dbid IN NUMBER,

base_instance_id IN NUMBER,

base_begin_snap_id IN NUMBER,

base_end_snap_id IN NUMBER,

comp_dbid IN NUMBER,

comp_instance_id IN NUMBER,

comp_begin_snap_id IN NUMBER,

comp_end_snap_id IN NUMBER,

report_type IN VARCHAR2 := 'HTML')

RETURN CLOB;

69

Wrap-Up

7070

Summary

 Do not guess

 If your problem is not caused by slow hardware then faster hardware will just create a

problem faster

 Gather information from a date-time range when everything was good and compare with

the date-time range when the problem was observed

 If the problem is slow SQL ... is the SQL statement itself slow or is it the entire environment

that should be examined?

 If the problem is related to CPU ... do you need more/faster CPUs or a better design?

 If the problem is related to I/O ... do you need a new SAN or better indexing?

 If the problem is related to network bandwidth ... do you need new NIC cards and to stop

network virtualization? Yes you probably do

7171

Conclusion

 Do not tune by guessing

 Do not blame everything on bad SQL statements

 Until you can prove that the root cause is the SQL

 Use the scientific method

 Construct a hypothesis

 Test the hypothesis by doing experiments

 Validate your conclusion

 Only rewrite SQL after you have established conclusively that the root cause
is the way a statement has been written and that rewriting the SQL statement
will address ALL issues

 You will most likely rewriting very few SQL statements

72

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorgan11g

*

ERROR at line 1:

ORA-00028: your session has been killed

Thank You

