
11

Oracle Tables
for DBAs and Developers

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorgan11gWednesday: 09 August, 2017

22

Unsafe Harbor

 This room is an unsafe harbor

 You can rely on the information in this presentation to help you protect your
data, your databases, your organization, and your career

 No one from Oracle has previewed this presentation

 No one from Oracle knows

what I'm going to say

 No one from Oracle has

supplied any of my materials

 Everything I will present is

existing, proven, functionality

33

Introduction

44

Daniel Morgan

 Oracle ACE Director Alumni

 Oracle Educator

 Curriculum author and primary program instructor at University of Washington

 Consultant: Harvard University

 University Guest Lecturers

 APAC: University of Canterbury (NZ)

 EMEA: University of Oslo (Norway)

 Latin America: Universidad Cenfotec, Universidad Latina de Panama, Technologico de Costa Rica

 IT Professional
 First computer: IBM 360/40 in 1969: Fortran IV

 Oracle Database since 1988-9 and Oracle Beta tester

 The Morgan behind www.morganslibrary.org

 Member Oracle Data Integration Solutions Partner Advisory Council

 Vice President Twin Cities Oracle Users Group (Minneapolis-St. Paul)

 Co-Founder International GoldenGate Oracle Users Group

 Principal Adviser: Forsythe Meta7

System/370-145 system console

55

My Websites: Morgan's Library

www.morganslibrary.org

66

Forsythe (1:2)

7th straight year CRN Top 50 Providers

 In business 46 years

 $1.2B in 2016

 Partner with more
than 200 technology
OEMs

 Second largest
security integrator in
North America

77

Forsythe (2:2)

 In business 46 years

 $1.2B in 2016

 Partner with more
than 200 technology
OEMs

 Focusing on solutions to business problems ... not products

7th straight year CRN Top 50 Providers

88

What Meta7 Brings To The Party

 Oracle only division of Forsythe

 Platinum Partner

 Focuses on the entire Oracle technology stack

 The entire line of Oracle infrastructure from x86
through the full stack of engineered systems and storage

 Oracle Database

 Design and Deployment

 Stability

 Security

 Scalability

 Data Integration (GoldenGate)

 Oracle Cloud

 DevOps

 Infrastructure as Code

 Focusing on solutions to business problems ... not products

9

Stability: IT Fire Fighting

9

10

Oracle Stack Security

10

11

Scalability: VLDBs
and Partitioning

11

12

Database Performance

12

13

Zero Downtime Migration

13

1414

Just In Time IT Procurement
with the Oracle Bare Metal Cloud and Infrastructure as Code

1515

Content Density Warning

1616

Introduction to Oracle Tables

1717

Why Am I Focusing On Oracle Tables?

 Because no one else is

 Because Oracle University doesn't teach this material

 Because there are 119 pages in the 12cR2 docs under CREATE TABLE

 Because no one knows the full syntax for basic DDL statements

 Because we have now spent more than 30 years talking about performance
tuning and yet the number one conference and training topic remains tuning
which proves that we need to stop focusing on edge cases and focus, instead,
on the basics

 Because explain plans, AWR Reports, and trace files will never fix a problem if
you don't know the full range of options available

 Because the best way to achieve high performance is to choose techniques
that reduce resource utilization

1818

How Well Do You Know CREATE TABLE?

1919

Legacy Architecture Tables

2020

Legacy Data Dictionary: DBA_, ALL_, USER_
VIEW_NAME

 DBA_ALL_TABLES

 DBA_APPLY_TABLE_COLUMNS

 DBA_BASE_TABLE_MVIEWS

 DBA_CAPTURE_PREPARED_TABLES

 DBA_CLUSTERING_TABLES

 DBA_EVALUATION_CONTEXT_TABLES

 DBA_EXTERNAL_TABLES

 DBA_FILE_GROUP_TABLES

 DBA_FILE_GROUP_TABLESPACES

 DBA_FLASHBACK_ARCHIVE_TABLES

 DBA_HIST_DATABASE_INSTANCE

 DBA_LBAC_TABLE_POLICIES

 DBA_MINING_MODEL_TABLES

 DBA_NESTED_TABLES

 DBA_NESTED_TABLE_COLS

 DBA_OBJECT_TABLES

 DBA_PARTIAL_DROP_TABS

 DBA_PART_TABLES

 DBA_PENDING_CONV_TABLES

 DBA_QUEUE_TABLES

 DBA_SECUREFILE_LOG_TABLES

 DBA_SOURCE_TABLES

 DBA_SUBSCRIBED_TABLES

VIEW_NAME

 DBA_SUMMARY_DETAIL_TABLES

 DBA_SYNC_CAPTURE_PREPARED_TABS

 DBA_SYNC_CAPTURE_TABLES

 DBA_TABLES

 DBA_TAB_COLS

 DBA_TAB_COLS_V$

 DBA_TAB_COLUMNS

 DBA_TAB_COL_STATISTICS

 DBA_TAB_COMMENTS

 DBA_TAB_HISTGRM_PENDING_STATS

 DBA_TAB_HISTOGRAMS

 DBA_TAB_IDENTITY_COLS

 DBA_TAB_MODIFICATIONS

 DBA_TAB_PARTITIONS

 DBA_TAB_PENDING_STATS

 DBA_TAB_PRIVS

 DBA_TAB_STATISTICS

 DBA_TAB_STATS_HISTORY

 DBA_TAB_STAT_PREFS

 DBA_TAB_SUBPARTITIONS

 DBA_TSTZ_TABLES

 DBA_TSTZ_TAB_COLS

 DBA_UNUSED_COL_TABS

VIEW_NAME

 DBA_UPDATABLE_COLUMNS

 DBA_WM_VERSIONED_TABLES

 DBA_XML_NESTED_TABLES

 DBA_XML_OUT_OF_LINE_TABLES

 DBA_XML_TABLES

 DBA_XML_TAB_COLS

2121

Heap Tables (1:2)

 Almost every Oracle table ever built by everyone except Oracle Corp. is a
heap table stored in a tablespaces ... a description of "vanilla" as good as any

 Heap tables are optimized for persistent storage of data when you have little
idea of what you are putting in and less of an idea of how that data, after
storage will be used

 There isn't one good reason for making every table a heap table: Not one

 By default all Oracle tables are heap tables

 A heap table is a single segment consisting of one or more extents: each extent consisting
of one or more blocks

 A heap table stores data as an unorganized pile of rows ... unordered

 With a heap table each "8K" block can contain information from only a single table

2222

Heap Tables (2:2)

SQL> CREATE TABLE state (state_abbrev VARCHAR2(2));

Table created.

SQL> desc state

Name Null? Type

------------------------------ -------- ----------------

STATE_ABBREV VARCHAR2(2)

SQL> SELECT dbms_metadata.get_ddl('TABLE', 'STATE')

2 FROM dual;

DBMS_METADATA.GET_DDL('TABLE','STATE')

CREATE TABLE "UWCLASS"."STATE"

("STATE_ABBREV" VARCHAR2(2)

) SEGMENT CREATION DEFERRED

PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255

NOCOMPRESS LOGGING

TABLESPACE "UWDATA"

2323

External Tables (1:3)

 An external tables is a physical file stored in a file system on disk

 Columns can be defined as fixed length or delimited

 External tables can be created by the database

 DML is not allowed on external tables

 SELECT statements interact with external tables precisely the same way they interact with
internal heap tables

 External tables are a replacement for the legacy SQL*Loader tool

SQL> conn sys@pdbdev as sysdba

Enter password:

Connected.

SQL> CREATE OR REPLACE DIRECTORY ext AS 'c:\external';

Directory created.

SQL>

SQL> GRANT read, write ON DIRECTORY ext TO uwclass;

Grant succeeded.

2424

External Tables (2:3)

-- create a file named

7369,KYTE,SME,20

7499,MILLSAP,SALESMAN,30

7521,NORGAARD,SALESMAN,30

7566,KOLK,MANAGER,20

7654,LEWIS,ANALYST,30

-- create a file named

1111,MORGAN,DIRECTOR,10

2222,HARDIE,MANAGER,30

3333,HAVEMEYER,CTO,10

4444,LOFSTROM,DEVELOPER,10

5555,TOWNSEND,MANAGER,30

-- create a file on the hard disk named cost.txt with the follow 4 lines:

YEAR PID CPU GROSS REVENUE

2003 def 2.00 123.4567890

2004 ABC 1.00 39.7288841651344

2005 xyz 1.99 1107.5458517352

A comma delimited flat file is export from a UNIX database and transferred for loading into a Windows based Oracle database. The lines are terminated with 0x0A
and not the 0x0A 0x0D pair for DOS/Windows. The fields are randomly double quoted, and some contain commas internal to the field's data like the following:

100001,"7123 HIGHLAND DR","03/28/1965"," Mercer Island, WA 98040","Morgan, Dan A", "","","63034630752",

14,1,"F","T","06/28/2009","",0,"","01/01/2010","N", "01/01/1999",""

100020,"5432 SOUTH 28TH ST","01/01/1951"," Mercer Island, WA 98040", "Burger,Tom",

"","2566400","ZPW345070938",64,1,"M","B","02/23/2000","",0,"", "12/31/1799","P","12/31/1979",""

-- save external file as c:\external\preprocess.dat.gz (if UNIX or LINUX use your home directory)

2525

External Tables (3:3)

 Note the key words "ORGANIZATION EXTERNAL"

CREATE TABLE <table_name> (

<column_definitions>)

ORGANIZATION EXTERNAL

(TYPE oracle_loader

DEFAULT DIRECTORY <oracle_directory_object_name>

ACCESS PARAMETERS (

RECORDS DELIMITED BY newline

BADFILE <file_name>

DISCARDFILE <file_name>

LOGFILE <file_name>

[READSIZE <bytes>]

[SKIP <number_of_rows>]

FIELDS TERMINATED BY '<terminator>'

OPTIONALLY ENCLOSED BY '<character>'

MISSING FIELD VALUES ARE <VALUE | NULL>

REJECT ROWS WITH ALL NULL FIELDS

(<column_name_list>))\

LOCATION ('<file_name>'))

[PARALLEL]

REJECT LIMIT <UNLIMITED | integer>

MONITORING | NOMONITORING];

conn uwclass/uwclass@pdbdev

CREATE TABLE ext_tab1 (

empno CHAR(4),

ename CHAR(20),

job CHAR(20),

deptno CHAR(3))

ORGANIZATION EXTERNAL (

TYPE oracle_loader

DEFAULT DIRECTORY ext

ACCESS PARAMETERS (

RECORDS DELIMITED BY NEWLINE

BADFILE ext:'bad_%a_%p.bad'

LOGFILE ext:'log_%a_%p.log'

FIELDS TERMINATED BY ','

OPTIONALLY ENCLOSED BY '"'

MISSING FIELD VALUES ARE NULL

REJECT ROWS WITH ALL NULL FIELDS

(empno, ename, job, deptno))

LOCATION ('demo1.dat'))

PARALLEL

REJECT LIMIT 0

NOMONITORING;

SELECT * FROM ext_tab;

2626

Global Temporary Tables (GTT) (1:2)

 One of the most expensive things you can do in an Oracle database is "DROP
TABLE"

 Global temporary tables address this issue by creating a permanent table
where the data is temporary

 GTTs can have

 Constraints

 Indexes

 Optimizer Statistics

 Synonyms

 Views

 GTTs are built in the temporary tablespace so the same METADATA is shared
by all users while the data remains private

2727

Global Temporary Tables (GTT) (2:2)

 There are two types of GTTs

 ON COMMIT DELETE ROWS

 Data is deleted when a COMMIT is issued

 Use these primarily to preserve a temporary working data set or an intermediate result set

 ON COMMIT PRESERVE ROWS

 Data is deleted when the session ends

 Use these primarily to preserve a working data set across multiple transactions or as a result
table for a report writing/business intelligence tool

CREATE GLOBAL TEMPORARY TABLE gtt_ocdr (

zip_code VARCHAR2(5),

by_user VARCHAR2(30),

entry_date DATE)

ON COMMIT DELETE ROWS;

CREATE GLOBAL TEMPORARY TABLE gtt_ocpr (

zip_code VARCHAR2(5),

by_user VARCHAR2(30),

entry_date DATE)

ON COMMIT PRESERVE ROWS;

2828

Index Organized Tables (IOT) (1:2)

 IOTs are wholly underutilized by developers and DBAs

 An IOT is a table stored as a B*Tree index rather than as an unorganized
heap of data

 Use IOTs where the size of the primary key index is a substantial fraction, or
larger, than the size of the table

 Use IOTs when some of the columns are accessed frequently and others may
be rarely or never accessed

 Look up tables, the children of foreign key referential constraints are often
perfect candidates for storage as an IOT

2929

Index Organized Tables (IOT) (2:2)

CREATE TABLE labor_hour (

WORK_DATE DATE,

EMPLOYEE_NO VARCHAR2(8),

CONSTRAINT pk_labor_hour

PRIMARY KEY (work_date, employee_no))

ORGANIZATION INDEX;

CREATE TABLE compressed_iot (owner, object_type, object_name,

CONSTRAINT pk_compressed_iot

PRIMARY KEY(owner, object_type, object_name))

ORGANIZATION INDEX

COMPRESS 2 AS

SELECT owner, object_type, object_name

FROM all_objects;

CREATE TABLE labor_hour (

WORK_DATE DATE,

EMPLOYEE_NO VARCHAR2(8),

SUMMIT_WORK_ORDER_NO VARCHAR2(7),

DASH VARCHAR2(2),

CLASS_CODE VARCHAR2(6),

PAYCODE VARCHAR2(2),

ASSIGNED_CREW_NUMBER VARCHAR2(5),

TRANSFER_CREW_NUMBER VARCHAR2(5),

REFERENCE_TYPE VARCHAR2(1),

REFERENCE_NUMBER VARCHAR2(10),

OVERTIME_CODE VARCHAR2(1),

SHIFT_DIFFERENTIAL VARCHAR2(1) NOT NULL,

HOURS NUMBER(4,2) NOT NULL,

MOD_USER_ID VARCHAR2(30) DEFAULT USER,

MOD_USER_DATE DATE DEFAULT SYSDATE,

CONSTRAINT pk_labor_hour

PRIMARY KEY (work_date, employee_no, summit_work_order_no, dash, class_code, paycode, assigned_crew_number,

transfer_crew_number, reference_type, reference_number, overtime_code, shift_differential))

ORGANIZATION INDEX

INCLUDING hours

PCTTHRESHOLD 10

OVERFLOW TABLESPACE uwdata;

3030

Partitioned Tables (1:7)

 Tables are a logical, not a physical, construct

 Partitions and Subpartition are maps

 Just as a tablespace maps many datafile

 Just as a regular heap table maps many blocks

 Partitioned tables map segments so that they appear to be a single object

 Partitions may optionally map many subpartitions for increased granularity

3131

Partitioned Tables (2:7)

 Segments exist within a tablespace

 Segments are a collection of extents

 Extents are a collection of data blocks

 Data blocks are mapped to disk blocks

Extents DB Blocks O/S BlocksObject Segment

Basic Heap Table

=

3232

Partitioned Tables (3:7)

Segment=Object Extents DB Blocks O/S Blocks

Basic Heap Table

Extents DB Blocks O/S BlocksObject Segment<>

Partitioned Table

3333

Partitioned Tables (4:7)

 Multiple types of partitioning

 HASH (a database internally generated hashing algorithm) - least valuable and overused

 LIST (for example North, South, East West)

 RANGE (for example 2015, 2016, 2017, 2018) - most valuable and most commonly used

 Multiple types of RANGE partitioning

 Basic

 Interval (date or numeric)

 Reference

 SYSTEM

 Data stored in partitions can be

 Encrypted to protect sensitive information (for example credit cards)

 Compressed to save on storage costs (for example older data)

 Relocated to slower, less expensive, disk when it is less frequently accessed

 Made READ ONLY so that it cannot be accidentally changed

 Easily exported to flat files, spreadsheets, and other databases

 Exported into spreadsheets with lessened system impact

3434

Partitioned Tables (5:7)

 System Partitioning

 Partitioned tables created by the
Oracle Database and owned by
one of the database's built-in
schemas

 User Partitioning

 Partitioned tables created by users
or applications installed by the
user

 Only available for Enterprise
Edition

3535

Partitioned Tables (6:7)

 Speed with Very Large Databases

 Partition Pruning (Developer)

Oracle optimizes SQL statements to mark the partitions or subpartitions that need to be
accessed and eliminates (prunes) unnecessary partitions or subpartitions from access.
Partition pruning is the skipping of unnecessary index and data partitions or subpartitions
by a query

 Partition Elimination (DBA)

 Ease of Management

 The following built-in objects support partition tables

 DATAOBJ_TO_PARTITION function

 DBMS_PART package

 DBMS_PCLXUTIL package

 Partitions can be based on normal, hidden, and virtual columns

 It is always preferable, whenever possible, to use local indexes

3636

Partitioned Tables (7:7)

 The following are examples of special use cases for table partitioning
CREATE TABLE orders OF XMLType

XMLTYPE STORE AS BINARY XML

VIRTUAL COLUMNS (site_id AS (XMLCast(XMLQuery('/Order/@SiteId' PASSING OBJECT_VALUE RETURNING CONTENT) AS NUMBER)))

PARTITION BY RANGE (site_id) (

PARTITION p1 VALUES LESS THAN (10),

PARTITION p2 VALUES LESS THAN (20),

PARTITION pm VALUES LESS THAN (MAXVALUE));

CREATE TABLE json_orders (

tx_id NUMBER(5),

tx_date DATE,

jsondata VARCHAR2(4000),

site_id AS (JSON_VALUE(jsondata, '$.siteId' RETURNING NUMBER)))

PARTITION BY RANGE (site_id) (

PARTITION p1 VALUES LESS THAN (10),

PARTITION p2 VALUES LESS THAN (20),

PARTITION pm VALUES LESS THAN (MAXVALUE));

CREATE TABLE ref_child (

table_name VARCHAR2(30) NOT NULL,

index_name VARCHAR2(30) NOT NULL,

CONSTRAINT fk_ref_child_parent

FOREIGN KEY(table_name) REFERENCES ref_parent(table_name))

PARTITION BY REFERENCE(fk_ref_child_parent);

3737

XML Tables

 Use the optimized storage of XML tables when persisting storage of XML
documents

CREATE TABLE xml_lob_tab OF XMLTYPE;

CREATE TABLE uwclass$schema OF SYS.XMLTYPE

XMLSCHEMA "http://xmlns.oracle.com/xdb/XDBSchema.xsd"

ELEMENT "schema" ID 81

TABLESPACE uwdata;

CREATE TABLE orders OF XMLType

XMLTYPE STORE AS BINARY XML;

3838

Object-Relational Tables

3939

Object/Nested Tables with a NESTED TABLE

 The best advice I can provide you is don't build these ... you will sacrifice data
integrity, space, and performance

 That said ... here's how you do it
CREATE OR REPLACE NONEDITIONABLE TYPE CourseList AS TABLE OF VARCHAR2(64);

/

CREATE TABLE department (

name VARCHAR2(20),

director VARCHAR2(20),

office VARCHAR2(20),

courses CourseList)

NESTED TABLE courses STORE AS courses_tab;

INSERT INTO department

(name, director, office, courses)

VALUES

('English', 'Lynn Saunders', 'Breakstone Hall 205', CourseList(

'Expository Writing',

'Film and Literature',

'Modern Science Fiction',

'Discursive Writing',

'Modern English Grammar',

'Introduction to Shakespeare',

'Modern Drama',

'The Short Story',

'The American Novel'));

4040

Object/Nested Table Based with a VARRAY

 The best advice I can provide you is don't build these ... you will sacrifice data
integrity, space, and performance

 That said ... here's how you do it

CREATE OR REPLACE TYPE Project AUTHID DEFINER AS OBJECT (

project_no NUMBER(2),

title VARCHAR2(35),

cost NUMBER(7,2));

/

CREATE OR REPLACE TYPE ProjectList AS VARRAY(50) OF Project;

/

CREATE TABLE department (

dept_id NUMBER(2),

dname VARCHAR2(15),

budget NUMBER(11,2),

projects ProjectList);

INSERT INTO department

(dept_id, dname, budget, projects)

VALUES

(42, 'Quantum Mechanics', '$424242.42',

ProjectList(Project(1, 'Standard Model', 2121'),

Project(2, 'Uncertainty Principal', 21.21)));

4141

12c Container Architecture Tables

4242

New 12cR2 Container Database Architecture

Dev 1

PDB

Seed

PDB$SEED

Application

Seed

PDBDEV PDBQA PDBUATPDB

Customer1

PDB

Customer2

PDB

Customer3

4343

Common Tables (1:2)

 As of Oracle Database version 12.2 tables in an Application Root container
can be optionally created with shared metadata or shared data

 When metadata, the DDL, is shared into PDBs as pointers from the
Application Root data dictionary

SQL> ALTER PLUGGABLE DATABASE APPLICATION uw_app

2 BEGIN UPGRADE '1.0' TO '2.0'

3 COMMENT 'Adding New Table With Sharing';

SQL> CREATE TABLE serv_inst

2 SHARING=METADATA (

3 siid NUMBER(10),

4 si_status VARCHAR2(15),

5 type VARCHAR2(5),

6 installstatus VARCHAR2(1),

7 location_code NUMBER(10),

8 custacct_id VARCHAR2(10),

9 srvr_id NUMBER(10),

10* ws_id NUMBER(10));

Table created.

SQL> ALTER PLUGGABLE DATABASE APPLICATION uw_app END UPGRADE;

4444

Common Tables (2:2)

 As of Oracle Database version 12.2 tables in an Application Root container
can be optionally created with shared metadata or shared data

 When data is shared the DDL and the table rows are shared into PDBs under
the application root

SQL> ALTER PLUGGABLE DATABASE APPLICATION uw_app

2 BEGIN UPGRADE '1.0' TO '2.0'

3 COMMENT 'Adding New Table With Sharing';

SQL> CREATE TABLE serv_inst

2 SHARING=DATA (

3 siid NUMBER(10),

4 si_status VARCHAR2(15),

5 type VARCHAR2(5),

6 installstatus VARCHAR2(1),

7 location_code NUMBER(10),

8 custacct_id VARCHAR2(10),

9 srvr_id NUMBER(10),

10* ws_id NUMBER(10));

Table created.

SQL> ALTER PLUGGABLE DATABASE APPLICATION uw_app END UPGRADE;

4545

Table Options

4646

Tables in the 12.2 Data Dictionary (1:2)

 By default all Oracle tables are heap tables
SQL> desc dba_tables

Name Null? Type

--------------------------- -------- ---------------

OWNER NOT NULL VARCHAR2(128)

TABLE_NAME NOT NULL VARCHAR2(128)

TABLESPACE_NAME VARCHAR2(30)

CLUSTER_NAME VARCHAR2(128)

IOT_NAME VARCHAR2(128)

STATUS VARCHAR2(8)

PCT_FREE NUMBER

PCT_USED NUMBER

INI_TRANS NUMBER

MAX_TRANS NUMBER

INITIAL_EXTENT NUMBER

NEXT_EXTENT NUMBER

MIN_EXTENTS NUMBER

MAX_EXTENTS NUMBER

PCT_INCREASE NUMBER

FREELISTS NUMBER

FREELIST_GROUPS NUMBER

LOGGING VARCHAR2(3)

BACKED_UP VARCHAR2(1)

NUM_ROWS NUMBER

BLOCKS NUMBER

EMPTY_BLOCKS NUMBER

AVG_SPACE NUMBER

CHAIN_CNT NUMBER

AVG_ROW_LEN NUMBER

AVG_SPACE_FREELIST_BLOCKS NUMBER

NUM_FREELIST_BLOCKS NUMBER

DEGREE VARCHAR2(10)

INSTANCES VARCHAR2(10)

CACHE VARCHAR2(5)

TABLE_LOCK VARCHAR2(8)

SAMPLE_SIZE NUMBER

LAST_ANALYZED DATE

PARTITIONED VARCHAR2(3)

IOT_TYPE VARCHAR2(12)

TEMPORARY VARCHAR2(1)

SECONDARY VARCHAR2(1)

NESTED VARCHAR2(3)

BUFFER_POOL VARCHAR2(7)

FLASH_CACHE VARCHAR2(7)

CELL_FLASH_CACHE VARCHAR2(7)

ROW_MOVEMENT VARCHAR2(8)

GLOBAL_STATS VARCHAR2(3)

USER_STATS VARCHAR2(3)

DURATION VARCHAR2(15)

SKIP_CORRUPT VARCHAR2(8)

MONITORING VARCHAR2(3)

CLUSTER_OWNER VARCHAR2(128)

DEPENDENCIES VARCHAR2(8)

COMPRESSION VARCHAR2(8)

COMPRESS_FOR VARCHAR2(30)

DROPPED VARCHAR2(3)

READ_ONLY VARCHAR2(3)

SEGMENT_CREATED VARCHAR2(3)

RESULT_CACHE VARCHAR2(7)

CLUSTERING VARCHAR2(3)

ACTIVITY_TRACKING VARCHAR2(23)

DML_TIMESTAMP VARCHAR2(25)

HAS_IDENTITY VARCHAR2(3)

CONTAINER_DATA VARCHAR2(3)

INMEMORY VARCHAR2(8)

INMEMORY_PRIORITY VARCHAR2(8)

INMEMORY_DISTRIBUTE VARCHAR2(15)

INMEMORY_COMPRESSION VARCHAR2(17)

INMEMORY_DUPLICATE VARCHAR2(13)

4747

Tables in the 12.2 Data Dictionary (2:2)

 By default all Oracle tables are heap tables
SQL> desc dba_tables

Name Null? Type

--------------------------- -------- ---------------

OWNER NOT NULL VARCHAR2(128)

TABLE_NAME NOT NULL VARCHAR2(128)

TABLESPACE_NAME VARCHAR2(30)

CLUSTER_NAME VARCHAR2(128)

IOT_NAME VARCHAR2(128)

STATUS VARCHAR2(8)

PCT_FREE NUMBER

PCT_USED NUMBER

INI_TRANS NUMBER

MAX_TRANS NUMBER

INITIAL_EXTENT NUMBER

NEXT_EXTENT NUMBER

MIN_EXTENTS NUMBER

MAX_EXTENTS NUMBER

PCT_INCREASE NUMBER

FREELISTS NUMBER

FREELIST_GROUPS NUMBER

LOGGING VARCHAR2(3)

BACKED_UP VARCHAR2(1)

NUM_ROWS NUMBER

BLOCKS NUMBER

EMPTY_BLOCKS NUMBER

AVG_SPACE NUMBER

CHAIN_CNT NUMBER

AVG_ROW_LEN NUMBER

AVG_SPACE_FREELIST_BLOCKS NUMBER

NUM_FREELIST_BLOCKS NUMBER

DEGREE VARCHAR2(10)

INSTANCES VARCHAR2(10)

CACHE VARCHAR2(5)

TABLE_LOCK VARCHAR2(8)

SAMPLE_SIZE NUMBER

LAST_ANALYZED DATE

PARTITIONED VARCHAR2(3)

IOT_TYPE VARCHAR2(12)

TEMPORARY VARCHAR2(1)

SECONDARY VARCHAR2(1)

NESTED VARCHAR2(3)

BUFFER_POOL VARCHAR2(7)

FLASH_CACHE VARCHAR2(7)

CELL_FLASH_CACHE VARCHAR2(7)

ROW_MOVEMENT VARCHAR2(8)

GLOBAL_STATS VARCHAR2(3)

USER_STATS VARCHAR2(3)

DURATION VARCHAR2(15)

SKIP_CORRUPT VARCHAR2(8)

MONITORING VARCHAR2(3)

CLUSTER_OWNER VARCHAR2(128)

DEPENDENCIES VARCHAR2(8)

COMPRESSION VARCHAR2(8)

COMPRESS_FOR VARCHAR2(30)

DROPPED VARCHAR2(3)

READ_ONLY VARCHAR2(3)

SEGMENT_CREATED VARCHAR2(3)

RESULT_CACHE VARCHAR2(7)

CLUSTERING VARCHAR2(3)

ACTIVITY_TRACKING VARCHAR2(23)

DML_TIMESTAMP VARCHAR2(25)

HAS_IDENTITY VARCHAR2(3)

CONTAINER_DATA VARCHAR2(3)

INMEMORY VARCHAR2(8)

INMEMORY_PRIORITY VARCHAR2(8)

INMEMORY_DISTRIBUTE VARCHAR2(15)

INMEMORY_COMPRESSION VARCHAR2(17)

INMEMORY_DUPLICATE VARCHAR2(13)

4848

Table Storage Types (1:2)

 Tablespace

 A tablespace is the default table storage definition and is a logical mapping to space in one
or more physical datafiles

 Tablespaces are limited to storing one segment per block

 Tablespaces can be read-write or read-only

 The default Oracle tablespace definition wastes 10% of most tables

 Clusters

 A cluster is a storage definition that can be mapped onto a tablespace that suspends the
default rules and allows for capabilities that can be used to greatly enhance performance

 The Oracle data dictionary's incredible performance speed is based in large part on the
use of Clusters

 SecureFiles

 Like Clusters a SecureFile is a mapped portion of a tablespace that suspends the default
rules and enhances the ability to store LOBs (they have nothing to do with security)

 File System

 Used by external tables

4949

Table Storage Types (2:2)

 Here's how Oracle makes use of Clusters to enhance data dictionary
performance

 C_OBJ# stores information from 17
separate but related tables within a
single block minimizing I/O and join
overhead

SQL> SELECT cluster_name, tablespace_name TBS_NAME,

cluster_type CTYPE

2 FROM dba_clusters

3 ORDER BY 1;

CLUSTER_NAME TBS_NAME CTYPE

---------------------- --------- -----

C_COBJ# SYSTEM INDEX

C_FILE#_BLOCK# SYSTEM INDEX

C_MLOG# SYSTEM INDEX

C_OBJ# SYSTEM INDEX

C_OBJ#_INTCOL# SYSTEM INDEX

C_RG# SYSTEM INDEX

C_TOID_VERSION# SYSTEM INDEX

C_TS# SYSTEM INDEX

C_USER# SYSTEM INDEX

SMON_SCN_TO_TIME_AUX SYSAUX INDEX

SQL> SELECT table_name

2 FROM dba_tables

3 WHERE cluster_name = 'C_OBJ#'

4* ORDER BY 1;

TABLE_NAME

ASSEMBLY$ -- Assemblies

ATTRCOL$ -- Column attributes

CLU$ -- Clusters

COL$ -- Columns

COLTYPE$ -- Column types

ICOL$ -- Index columns

ICOLDEP$ -- Index column dependents

IND$ -- Indexes

LIBRARY$ -- Libraries

LOB$ -- LOBs

NTAB$ -- Nested tables

OPQTYPE$ -- Opaque Types

REFCON$ -- Referential constraints

SUBCOLTYPE$ -- Subcolumn types

TAB$ -- Tables

TYPE_MISC$ -- Audits

VIEWTRCOL$ -- View Column Attributes

5050

Cluster Types

 Single Table Cluster By Hash

 Multi-Table Cluster By Hash

 Multi-Table Cluster By Index

 Sorted Hash Clusters

 Can reduce the overhead of an
ORDER BY clause to zero

CREATE CLUSTER sorted_hc (

program_id NUMBER(3),

line_id NUMBER(10) SORT,

delivery_dt DATE SORT)

TABLESPACE uwdata

HASHKEYS 9

SIZE 750

HASH IS program_id;

CREATE TABLE shc_airplane (

program_id NUMBER(3),

line_id NUMBER(10) SORT,

delivery_dt DATE SORT,

customer_id VARCHAR2(3),

order_dt DATE)

CLUSTER sorted_hc (program_id, line_id, delivery_dt);

CREATE CLUSTER sc_srvr_id (

srvr_id NUMBER(10))

SIZE 1024;

CREATE INDEX idx_sc_srvr_id ON CLUSTER sc_srvr_id;

CREATE TABLE cservers (

srvr_id NUMBER(10),

network_id NUMBER(10),

status VARCHAR2(1),

latitude FLOAT(20),

longitude FLOAT(20),

netaddress VARCHAR2(15))

CLUSTER sc_srvr_id (srvr_id);

CREATE TABLE cserv_inst (

siid NUMBER(10),

si_status VARCHAR2(15),

type VARCHAR2(5),

installstatus VARCHAR2(1),

location_code NUMBER(10),

custacct_id VARCHAR2(10),

srvr_id NUMBER(10),

ws_id NUMBER(10))

CLUSTER sc_srvr_id (srvr_id);

5151

SecureFiles

 SecureFiles LOB storage is one of two storage types used with Oracle
Database 12c the other type is BasicFiles LOB storage

 The SECUREFILE LOB parameter enables advanced features, including
compression and deduplication (part of the Advanced Compression Option),
and encryption (part of the Advanced Security Option)

 Starting with Oracle Database 12c, SecureFiles is the default storage
mechanism for LOBs

CREATE TABLE sec_tab_dd (

rid NUMBER(5),

bcol BLOB)

LOB (bcol)

STORE AS SECUREFILE bcol2 (

TABLESPACE securefiletbs

RETENTION MIN 3600

COMPRESS ENCRYPT CACHE READS)

TABLESPACE uwdata;

5252

ASM

 Not all ASM DiskGroups should be created equal

 For diskgroups not on SSD you can get more I/Os from the outside of the
platter than the inside

ALTER DISKGROUP data

ADD TEMPLATE datafile_hot ATTRIBUTE (HOT MIRRORHOT);

ALTER DISKGROUP archives

ADD TEMPLATE datafile_cold ATTRIBUTE (COLD MIRRORCOLD);

ALTER DISKGROUP data

MODIFY FILE '+data/orcl/datafile/users.259.679156903' ATTRIBUTE (HOT MIRRORHOT);

5353

Column Data Types (1:2)

 Consider your options before choosing a data type

CREATE TABLE tstring (

charcol CHAR(2000),

charvaryingcol CHAR VARYING(4000),

charactercol CHARACTER(2000),

charactervaryingcol CHARACTER VARYING(4000),

nationalcharvarying NATIONAL CHAR VARYING(2000),

nationalcharactervaryingcol NATIONAL CHARACTER VARYING(2000),

ncharcol NCHAR(1000),

ncharvaryingcol NCHAR VARYING(2000),

nvarchar2col NVARCHAR2(2000),

varcharcol VARCHAR(4000),

varchar2col VARCHAR2(4000));

SQL> desc tstring

Name Type

--------------------------- --------------

CHARCOL CHAR(2000)

CHARVARYINGCOL VARCHAR2(4000)

CHARACTERCOL CHAR(2000)

CHARACTERVARYINGCOL VARCHAR2(4000)

NATIONALCHARVARYING NVARCHAR2(2000)

NATIONALCHARACTERVARYINGCOL NVARCHAR2(2000)

NCHARCOL NCHAR(1000)

NCHARVARYINGCOL NVARCHAR2(2000)

NVARCHAR2COL NVARCHAR2(2000)

VARCHARCOL VARCHAR2(4000)

VARCHAR2COL VARCHAR2(4000)

CREATE TABLE tnumeric (

deccol DEC(38),

decimalcol DECIMAL(38),

doubleprecisioncol DOUBLE PRECISION,

floatcol FLOAT(126),

intcol INT,

integercol INTEGER,

numbercol NUMBER(38),

numberfcol NUMBER,

numericcol NUMERIC(38),

numericfcol NUMERIC,

realcol REAL,

smallintcol SMALLINT);

SQL> desc tnumeric

Name Type

------------------- --------------

DECCOL NUMBER(38)

DECIMALCOL NUMBER(38)

DOUBLEPRECISIONCOL FLOAT(126)

FLOATCOL FLOAT(126)

INTCOL NUMBER(38)

INTEGERCOL NUMBER(38)

NUMBERCOL NUMBER(38)

NUMBERFCOL NUMBER

NUMERICCOL NUMBER(38)

NUMERICFCOL NUMBER(38)

REALCOL FLOAT(63)

SMALLINTCOL NUMBER(38)

5454

Column Data Types (2:2)

 Consider your options before choosing a data type

CREATE TABLE ttemporal (

date_col DATE,

int_d2s_col INTERVAL DAY TO SECOND,

int_y2m_col INTERVAL YEAR TO MONTH,

ts_col TIMESTAMP,

tswtz_col TIMESTAMP WITH TIME ZONE,

tswltz_col TIMESTAMP WITH LOCAL TIME ZONE);

SQL> desc ttemporal

Name Type

------------------- --------------

DATE_COL DATE

INT_D2S_COL INTERVAL DAY(2) TO SECOND(6)

INT_Y2M_COL INTERVAL YEAR(2) TO MONTH

TS_COL TIMESTAMP(6)

TSWTZ_COL TIMESTAMP(6) WITH TIME ZONE

TSWLTZ_COL TIMESTAMP(6) WITH LOCAL TIME

ZONE

CREATE TABLE tmisc (

rowid_col ROWID,

urowid_col UROWID,

anytype_col ANYTYPE,

anydata_col ANYDATA,

anydataset_col ANYDATASET);

SQL> desc tmisc

Name Type

------------------- --------------

ROWID_COL ROWID

UROWID_COL ROWID

ANYTYPE_COL ANYTYPE

ANYDATA_COL ANYDATA

ANYDATASET_COL ANYDATASET

5555

Column Defaults

 Provides a default value during DML if the SQL
statement would leave the column NULL

 In 12c this can include a sequence generated
surrogate key known as an identity column

SQL> desc dba_tab_cols

Name Null? Type

----------------------- -------- --------------

OWNER NOT NULL VARCHAR2(128)

TABLE_NAME NOT NULL VARCHAR2(128)

COLUMN_NAME NOT NULL VARCHAR2(128)

DATA_TYPE VARCHAR2(128)

DATA_TYPE_MOD VARCHAR2(3)

DATA_TYPE_OWNER VARCHAR2(128)

DATA_LENGTH NOT NULL NUMBER

DATA_PRECISION NUMBER

DATA_SCALE NUMBER

NULLABLE VARCHAR2(1)

COLUMN_ID NUMBER

DEFAULT_LENGTH NUMBER

DATA_DEFAULT LONG

NUM_DISTINCT NUMBER

LOW_VALUE RAW(2000)

HIGH_VALUE RAW(2000)

DENSITY NUMBER

NUM_NULLS NUMBER

NUM_BUCKETS NUMBER

...

HIDDEN_COLUMN VARCHAR2(3)

VIRTUAL_COLUMN VARCHAR2(3)

...

COLLATION VARCHAR2(100)

COLLATED_COLUMN_ID NUMBER

CREATE TABLE customers (

cust_id NUMBER GENERATED ALWAYS AS IDENTITY

INCREMENT BY 2

START WITH 100

MAXVALUE 110

MINVALUE 100

CYCLE

CACHE 5

NOORDER,

first_name VARCHAR2(25)

last_name VARCHAR2(25));

5656

Hidden Columns (1:2)

 Hidden, aka Invisible, columns are columns
that are invisible unless specifically named in
a command or statement

 The following are examples where a hidden
column will not be visible

 SQL*Plus describe command

 SELECT *

SQL> desc dba_tab_cols

Name Null? Type

------------------------ -------- --------------

OWNER NOT NULL VARCHAR2(128)

TABLE_NAME NOT NULL VARCHAR2(128)

COLUMN_NAME NOT NULL VARCHAR2(128)

DATA_TYPE VARCHAR2(128)

DATA_TYPE_MOD VARCHAR2(3)

DATA_TYPE_OWNER VARCHAR2(128)

DATA_LENGTH NOT NULL NUMBER

DATA_PRECISION NUMBER

DATA_SCALE NUMBER

NULLABLE VARCHAR2(1)

COLUMN_ID NUMBER

DEFAULT_LENGTH NUMBER

DATA_DEFAULT LONG

NUM_DISTINCT NUMBER

LOW_VALUE RAW(2000)

HIGH_VALUE RAW(2000)

DENSITY NUMBER

NUM_NULLS NUMBER

NUM_BUCKETS NUMBER

...

HIDDEN_COLUMN VARCHAR2(3)

VIRTUAL_COLUMN VARCHAR2(3)

...

COLLATION VARCHAR2(100)

COLLATED_COLUMN_ID NUMBER

5757

Hidden Columns (2:2)

SQL> CREATE TABLE invis (

rid NUMBER,

acct_active NUMBER(1) INVISIBLE,

acct_name VARCHAR2(20));

Table created.

SQL> desc invis

Name Type

------------ --------------

RID NUMBER

ACCT_NAME VARCHAR2(20)

SQL> INSERT INTO invis

2 (rid, acct_active, acct_name)

3 VALUES

4 (1, 0, 'Morgan');

1 row created.

SQL> SELECT * FROM invis;

RID ACCT_NAME

---------- --------------------

1 Morgan

SQL> SELECT rid, acct_active, acct_name

FROM invis;

2

RID ACCT_ACTIVE ACCT_NAME

---------- ----------- --------------------

1 0 Morgan

5858

Virtual Columns

 Virtual columns are columns that do not
physically exist from the standpoint of providing
persistent data storage but rather virtualize the
result of a function or expression

 Virtual columns can be used for constraints,
indexing, and partitioning

CREATE TABLE vcol (

salary NUMBER(8),

bonus NUMBER(3),

total_comp NUMBER(10) AS (salary+bonus));

desc vcol

SELECT column_id, column_name, virtual_column

FROM user_tab_cols

WHERE table_name = 'VCOL'

INSERT INTO vcol

(salary, bonus)

VALUES

(1,2);

SQL> desc dba_tab_cols

Name Null? Type

----------------------- -------- --------------

OWNER NOT NULL VARCHAR2(128)

TABLE_NAME NOT NULL VARCHAR2(128)

COLUMN_NAME NOT NULL VARCHAR2(128)

DATA_TYPE VARCHAR2(128)

DATA_TYPE_MOD VARCHAR2(3)

DATA_TYPE_OWNER VARCHAR2(128)

DATA_LENGTH NOT NULL NUMBER

DATA_PRECISION NUMBER

DATA_SCALE NUMBER

NULLABLE VARCHAR2(1)

COLUMN_ID NUMBER

DEFAULT_LENGTH NUMBER

DATA_DEFAULT LONG

NUM_DISTINCT NUMBER

LOW_VALUE RAW(2000)

HIGH_VALUE RAW(2000)

DENSITY NUMBER

NUM_NULLS NUMBER

NUM_BUCKETS NUMBER

...

HIDDEN_COLUMN VARCHAR2(3)

VIRTUAL_COLUMN VARCHAR2(3)

...

COLLATION VARCHAR2(100)

COLLATED_COLUMN_ID NUMBER

5959

Performance Tuning Tables

6060

Table Tuning Rules

 Choose the optimal type of table and table storage options based on the way
the table will be accessed

 It is almost always better to accept a small penalty during INSERTs and
UPDATEs to gain an advantage for SELECT

 When designing tables ... thinking vertically ... not horizontally ... generally, the
more columns the more issues

 Order columns in the table by the probability they will be accessed in a filter or
join operation

 Do not make primary key columns NOT NULL

 Do not use the LONG or LONG RAW data types

6161

Too Many Columns

 Oracle claims that a table can contain up to 1,000 columns: It is not true. No
database can do 1,000 columns no matter what their marketing claims may be

 The maximum number of real table columns is 255

 Break the 255 barrier and optimizations such as advanced and hybrid
columnar compression no longer work

 A 1,000 column table is actually four segments joined together behind the
scenes just as a partitioned table appears to be a single segment but isn't

 Be suspicious of any table with more than 50 columns. At 100 columns it is
time to take a break and re-read the Codd-Date rules on normalization

 Think vertically not horizontally

 Be very suspicious of any table with column names in the form "SPARE1",
"SPARE2", "..."

 The more columns a table has the more cpu is required when accessing
columns to the right (as the table is displayed in a SELECT * query ... or at the bottom if the table is

displayed by a DESCribe)

6262

 Computers are not humans and tables are not paper forms

 CBO's column retrieval cost

 Oracle stores columns in variable length format

 Each row is parsed in order to retrieve one or more columns

 Each subsequently parsed column introduces a cost of 20 cpu cycles regardless of
whether it is of value or not

 These tables will be accessed by person_id or state: No one will ever put the
address2 column into the WHERE clause as a filter ... they won't filter on
middle initial either

Column Ordering

CREATE TABLE customers (

person_id NUMBER,

first_name VARCHAR2(30) NOT NULL,

middle_init VARCHAR2(2),

last_name VARCHAR2(30) NOT NULL,

address1 VARCHAR2(30),

address2 VARCHAR2(30),

city VARCHAR2(30),

state VARCHAR2(2));

Common Design

CREATE TABLE customers (

person_id NUMBER,

last_name VARCHAR2(30) NOT NULL,

state VARCHAR2(2) NOT NULL,

city VARCHAR2(30) NOT NULL,

first_name VARCHAR2(30) NOT NULL,

address1 VARCHAR2(30),

address2 VARCHAR2(30),

middle_init VARCHAR2(2));

Optimized Design

20

40

60

80

100

120

140

160

CPU

6363

Proof Column Ordering Matters in 12.1.0.2

CREATE TABLE read_test AS

SELECT *

FROM apex_040200.wwv_flow_page_plugs

WHERE rownum = 1;

SQL> explain plan for

2 select * from read_test;

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 214K| 2 (0)| 00:00:01 |

| 1 | TABLE ACCESS FULL| READ_TEST | 1 | 214K| 2 (0)| 00:00:01 |

-- fetch value from column 1

Final cost for query block SEL$1 (#0) - All Rows Plan:

Best join order: 1

Cost: 2.0002 Degree: 1 Card: 1.0000 Bytes: 13

Resc: 2.0002 Resc_io: 2.0000 Resc_cpu: 7271

Resp: 2.0002 Resp_io: 2.0000 Resc_cpu: 7271

-- fetch value from column 193

Final cost for query block SEL$1 (#0) - All Rows Plan:

Best join order: 1

Cost: 2.0003 Degree: 1 Card: 1.0000 Bytes: 2002

Resc: 2.0003 Resc_io: 2.0000 Resc_cpu: 11111

Resp: 2.0003 Resp_io: 2.0000 Resc_cpu: 11111

6464

It Still Matters in 12.2.0.1

 Run the query while performing a 10053 Level 1 Trace

How much are you willing to pay for accessing column 101?

ALTER SESSION SET tracefile_identifier = 'test_plan2';

ALTER SESSION SET EVENTS '10053 trace name context forever, level 1';

SELECT * FROM audsys.aud$unified WHERE inst_id = 2 AND ROWNUM = 1;

SELECT * FROM audsys.aud$unified WHERE con_id = 9 AND ROWNUM = 1;

ALTER SESSION SET EVENTS '10053 trace name context OFF';

SINGLE TABLE ACCESS PATH

Single Table Cardinality Estimation for AUD$UNIFIED[AUD$UNIFIED]

SPD: Return code in qosdDSDirSetup: NOCTX, estType = TABLE

kkecdn: Single Table Predicate:"AUD$UNIFIED"."INST_ID"=2
Column (#1): INST_ID(NUMBER)

AvgLen: 22 NDV: 0 Nulls: 81 Density: 0.000000

Estimated selectivity: 0.010000 , col: #1

Table: AUD$UNIFIED Alias: AUD$UNIFIED

Card: Original: 81.000000 Rounded: 1 Computed: 0.000000 Non Adjusted: 0.000000

Scan IO Cost (Disk) = 4.000000

Scan CPU Cost (Disk) = 85364.400000

Cost of predicates:

io = NOCOST, cpu = 50.000000, sel = 0.010000 flag = 2048 ("AUD$UNIFIED"."INST_ID"=2)

Total Scan IO Cost = 4.000000 (scan (Disk))

+ 0.000000 (io filter eval) (= 0.000000 (per row) * 81.000000 (#rows))

= 4.000000

Total Scan CPU Cost = 85364.400000 (scan (Disk))
+ 4050.000000 (cpu filter eval) (= 50.000000 (per row) * 81.000000 (#rows))

= 89414.400000
Access Path: TableScan

Cost: 4.002375 Resp: 4.002375 Degree: 0

Cost_io: 4.000000 Cost_cpu: 89414

Resp_io: 4.000000 Resp_cpu: 89414

Best:: AccessPath: TableScan

Cost: 4.002375 Degree: 1 Resp: 4.002375 Card: 0.000000 Bytes: 0.000000

SINGLE TABLE ACCESS PATH

Single Table Cardinality Estimation for AUD$UNIFIED[AUD$UNIFIED]

SPD: Return code in qosdDSDirSetup: NOCTX, estType = TABLE

kkecdn: Single Table Predicate:"AUD$UNIFIED"."CON_ID"=9
Column (#101): CON_ID(NUMBER)

AvgLen: 22 NDV: 0 Nulls: 81 Density: 0.000000

Estimated selectivity: 0.010000 , col: #101

Table: AUD$UNIFIED Alias: AUD$UNIFIED

Card: Original: 81.000000 Rounded: 1 Computed: 0.000000 Non Adjusted: 0.000000

Scan IO Cost (Disk) = 4.000000

Scan CPU Cost (Disk) = 245364.400000

Cost of predicates:

io = NOCOST, cpu = 50.000000, sel = 0.010000 flag = 2048 ("AUD$UNIFIED"."CON_ID"=9)

Total Scan IO Cost = 4.000000 (scan (Disk))

+ 0.000000 (io filter eval) (= 0.000000 (per row) * 81.000000 (#rows))

= 4.000000

Total Scan CPU Cost = 245364.400000 (scan (Disk))
+ 4050.000000 (cpu filter eval) (= 50.000000 (per row) * 81.000000 (#rows))

= 249414.400000
Access Path: TableScan

Cost: 4.006624 Resp: 4.006624 Degree: 0

Cost_io: 4.000000 Cost_cpu: 249414

Resp_io: 4.000000 Resp_cpu: 249414

Best:: AccessPath: TableScan

Cost: 4.006624 Degree: 1 Resp: 4.006624 Card: 0.000000 Bytes: 0.000000

Column 101
Column 1

6565

Stop Making Primary Keys NOT NULL

 the only value in creating a needless, and meaningless, check constraint?

 Is that you get to waste a little more CPU than everyone else

SQL> CREATE TABLE t (

2 recid NUMBER);

Table created.

SQL> desc t

Name Null? Type

--------------------------- -------- ----------------

RECID NUMBER

SQL> ALTER TABLE t

2 ADD CONSTRAINT pk_t

3 PRIMARY KEY (recid);

Table altered.

SQL> desc t

Name Null? Type

--------------------------- -------- ----------------

RECID NOT NULL NUMBER

6666

Compressed Tables

 Table compression comes in three separate flavors

 Basic ... no additional cost and including in the database license

 Advanced ... requires the Advanced Compression Option license

 Hybrid Columnar ... requires Exadata, ZFS, or Pillar Data Systems storage

 Compression does far more than save disk space ... it can greatly enhance
performance by minimizing I/O

 Compression and decompression require cpu so carefully calibrate usage on
systems that are cpu bound

6767

DBMS_SPACE

 This package provides segment space information not currently available
through the standard views

 Use the CREATE_TABLE_COST and CREATE_INDEX_COST to determine
the sizes of tables and indexes prior to their creation

 Use FREEBLOCKS and SPACE_USAGE to determine the free blocks
consumed by tables, partitions, LOBs, clusters, and indexes

 Use OBJECT_SPACE_USAGE, SPACE_USAGE, and UNUSED_SPACE to
learn how efficiently space allocated to an object is used

 Use VERIFY_SHRINK_CANDIDATE to determine whether an object can be
shrunk to drop the high water mark, recover space, and improve performance

dbms_space.create_table_cost(

tablespace_name IN VARCHAR2,

avg_row_size IN NUMBER,

row_count IN NUMBER,

pct_free IN NUMBER,

used_bytes OUT NUMBER,

alloc_bytes OUT NUMBER);

DECLARE

ub NUMBER;

ab NUMBER;

BEGIN

dbms_space.create_table_cost('UWDATA',28,250000,0,ub,ab);

dbms_output.put_line('Used Bytes: ' || TO_CHAR(ub));

dbms_output.put_line('Alloc Bytes: ' || TO_CHAR(ab));

END;

/

Used Bytes: 7880704

Alloc Bytes: 8126464

6868

In-Memory Clause (1:2)

 To greatly increase access
speed for joins and filters
consider the In-Memory option
which covers

 Full Database Caching

 In-Memory Aggregation

 In-Memory Column Store

6969

In-Memory Clause (2:2)

7070

Automated Data Optimization (ADO) (1:2)

 ADO is implemented with two Oracle capabilities ... heat maps utilizing the
DBMS_HEATMAP package and Integrated Lifecycle Management (ILM)
utilizing the DBMS_ILM and DBMS_ILM_ADMIN packages

 ILM can be used to apply policies to table data that automatically apply
management policies

 Compression

 Data Tiering

 In-Memory Option

CREATE TABLE rowmove_test (

testcol VARCHAR2(20))

ENABLE ROW MOVEMENT;

SELECT table_name, row_movement

FROM user_tables;

ALTER TABLE rowmove_test DISABLE ROW MOVEMENT;

SELECT table_name, row_movement

FROM user_tables;

7171

Automated Data Optimization (ADO) (2:2)

CREATE TABLESPACE tier1_ts DATAFILE '/u01/app/oracle/oradata/orcl12c/orcl/tier1.dbf' SIZE 10M AUTOEXTEND ON NEXT 5M;

CREATE TABLESPACE tier2_ts DATAFILE '/u01/app/oracle/oradata/orcl12c/orcl/tier2.dbf' SIZE 10M AUTOEXTEND ON NEXT 5M;

CREATE TABLESPACE tier3_ts DATAFILE '/u01/app/oracle/oradata/orcl12c/orcl/tier3.dbf' SIZE 50M AUTOEXTEND ON NEXT 5M;

CREATE TABLE order_hdr(

order_no NUMBER NOT NULL,

order_date DATE NOT NULL,

order_note VARCHAR2(500))

PARTITION BY RANGE (order_date)

(

PARTITION orders_2016_q3 VALUES LESS THAN (TO_DATE('01/10/2016', 'DD/MM/YYYY')) TABLESPACE tier3_ts,

PARTITION orders_2016_q4 VALUES LESS THAN (TO_DATE('01/01/2017', 'DD/MM/YYYY')) TABLESPACE tier3_ts,

PARTITION orders_2017_q1 VALUES LESS THAN (TO_DATE('01/04/2017', 'DD/MM/YYYY')) TABLESPACE tier2_ts

ILM ADD POLICY TIER TO tier3_ts READ ONLY SEGMENT AFTER 3 MONTHS OF NO ACCESS,

PARTITION orders_2017_q2 VALUES LESS THAN (TO_DATE('01/07/2017', 'DD/MM/YYYY')) TABLESPACE tier2_ts

ILM ADD POLICY TIER TO tier3_ts READ ONLY SEGMENT AFTER 3 MONTHS OF NO ACCESS,

PARTITION orders_2017_q3 VALUES LESS THAN (TO_DATE('01/10/2017', 'DD/MM/YYYY')) TABLESPACE tier1_ts

ILM ADD POLICY TIER TO tier2_ts READ ONLY SEGMENT AFTER 1 MONTHS OF NO ACCESS,

PARTITION orders_2017_q4 VALUES LESS THAN (TO_DATE('01/01/2018', 'DD/MM/YYYY')) TABLESPACE tier1_ts

ILM ADD POLICY TIER TO medium_storage_ts READ ONLY SEGMENT AFTER 2 MONTHS OF NO ACCESS)

ILM ADD POLICY ROW STORE COMPRESS BASIC SEGMENT AFTER 1 MONTHS OF NO ACCESS;

7272

Temporal Validity

 Associates one or more valid time dimensions with a table and makes data
visible depending on its time-based validity, as determined by the start and
end dates or time stamps of the period for which a given record is considered
valid

7373

More You Should Know About Tables

7474

Enabling Row Movement

 After a rowid is assigned to a row piece, the rowid can change in special

 circumstances if row movement is enabled

 Partition key updates

 Flashback Table operations

 Shrink table operations

CREATE TABLE rowmove_test (

testcol VARCHAR2(20))

ENABLE ROW MOVEMENT;

SELECT table_name, row_movement

FROM user_tables;

ALTER TABLE rowmove_test DISABLE ROW MOVEMENT;

SELECT table_name, row_movement

FROM user_tables;

7575

Row Dependencies

 ORA_ROWSCN pseudocolumn

 Returns, for each row, the conservative upper
bound system change number (SCN) of the
most recent change to the row

 This is useful for determining approximately
when a row was last updated

 It is not absolutely precise, because Oracle
tracks SCNs by transaction committed for the
block in which the row resides

CREATE TABLE scnprec (

testcol VARCHAR2(20))

ROWDEPENDENCIES;

SELECT table_name, dependencies

FROM user_tables;

SELECT current_scn

FROM v$database;

INSERT INTO scnprec VALUES ('ABC');

COMMIT;

INSERT INTO scnprec VALUES ('DEF');

COMMIT;

INSERT INTO scnprec VALUES ('GHI');

COMMIT;

SELECT ORA_ROWSCN, ROWID, testcol

FROM scnprec;

ORA_ROWSCN ROWID TESTCOL

---------- ------------------ --------

6022658 AAATuZAABAAAZxhAAA ABC

6022661 AAATuZAABAAAZxhAAB DEF

6022670 AAATuZAABAAAZxhAAC GHI

7676

DBMS_COMPARISON

 Use this fully documented and supported built-in package to compare data in
tables, views and materialized views

 First available in 11.1.0.6

 Can converge (fix) data discrepancies automatically
dbms_comparison.create_comparison(

comparison_name IN VARCHAR2, -- cannot contain spaces

schema_name IN VARCHAR2,

object_name IN VARCHAR2,

dblink_name IN VARCHAR2,

index_schema_name IN VARCHAR2 DEFAULT NULL,

index_name IN VARCHAR2 DEFAULT NULL,

remote_schema_name IN VARCHAR2 DEFAULT NULL,

remote_object_name IN VARCHAR2 DEFAULT NULL,

comparison_mode IN VARCHAR2 DEFAULT CMP_COMPARE_MODE_OBJECT,

column_list IN VARCHAR2 DEFAULT '*',

scan_mode IN VARCHAR2 DEFAULT CMP_SCAN_MODE_FULL,

scan_percent IN NUMBER DEFAULT NULL,

null_value IN VARCHAR2 DEFAULT CMP_NULL_VALUE_DEF,

local_converge_tag IN RAW DEFAULT NULL,

remote_converge_tag IN RAW DEFAULT NULL,

max_num_buckets IN NUMBER DEFAULT CMP_MAX_NUM_BUCKETS,

min_rows_in_bucket IN NUMBER DEFAULT CMP_MIN_ROWS_IN_BUCKET);

exec dbms_comparison.create_comparison(comparison_name=>'UWCompare',

schema_name=>'SCOTT',

object_name=>'DEPT',

dblink_name=>NULL,

remote_schema_name=>'ABC',

remote_object_name=>'DEPT',

scan_percent=>90);

DECLARE

ct dbms_comparison.comparison_type;

BEGIN

dbms_comparison.converge('UWCOMPARE', 2, ct,

dbms_comparison.CMP_CONVERGE_LOCAL_WINS, TRUE);

dbms_output.put_line(ct.scan_id);

dbms_output.put_line(ct.loc_rows_merged);

dbms_output.put_line(ct.rmt_rows_merged);

dbms_output.put_line(ct.loc_rows_deleted);

dbms_output.put_line(ct.rmt_rows_merged);

END;

/

7777

DBMS_DBCOMP

 Assumes that a primary database and one or more Data Guard physical
standby databases are deployed. The databases should be at least mounted
or open before block comparison is run

 Logical standby databases, Far Sync instances, and cascaded standbys
cannot be the target database

 First available in 12.2.0.1
dbms_dbcomp.dbcomp(

datafile IN VARCHAR2,

outputfile IN VARCHAR2,

block_dump IN BOOLEAN := FALSE);

exec dbms_dbcomp.dbcomp('ALL', '/home/oracle/lost_write_check.txt', TRUE);

-- in a separate SQL*Plus session

SELECT target_desc, sofar, totalwork

FROM v$session_longops

WHERE opname = 'BlockCompare';

TARGET_DESC SO FAR TOTALWORK

----------------------------- --------- ----------

Compared Blocks 367104 403142

Lost Writes 0 0

7878

DBMS_REDEFINITION

 Used to online redefine

 Table columns

 Table column names

 Table column data types

 Constraints

 Indexes

 Triggers
BEGIN

dbms_redefinition.can_redef_table('PM', 'PRINT_ADS', dbms_redefinition.cons_use_pk);

dbms_redefinition.redef_table(

uname => 'PM',

tname => 'PRINT_ADS',

table_compression_type => 'ROW STORE COMPRESS ADVANCED',

table_part_tablespace => 'NEWTBS',

index_key_compression_type => 'COMPRESS 1',

index_tablespace => 'NEWIDXTBS',

lob_compression_type => 'COMPRESS HIGH',

lob_tablespace => 'NEWLOBTBS',

lob_store_as => 'SECUREFILE');

dbms_redefinition.sync_interim_table('PM', 'PRINT_ADS', 'INT_PRINT_ADS');

dbms_redefinition.finish_redef_table('PM', 'PRINT_ADS', 'INT_PRINT_ADS');

END;

/

7979

Wrap Up

8080

Conclusion

 How comfortable are you with your knowledge of CREATE TABLE?

 Probably feel pretty good about DROP TABLE

 But how about all of the ALTER TABLE syntax?

 The most important principle in creating optimal tables is the same as
everything else in Oracle is "do the least work"

 Minimize CPU utilization

 Minimize I/O

 Take the load off the storage array

 Off the HBA cards

 Off the SAN switch

 Minimize network utilization

 Bandwidth

 Round Trips

 Minimize serialization

 Stop using 7.3.4 best practices ... and start using the best practices for your
current version

81

*

ERROR at line 1:

ORA-00028: your session has been killed

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949

Thank You

