V o
| Great Lakes Oracle Conference

Oracle Insert Statements
for DBAs and Developers

Daniel A. Morgan

email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorganllg

twitter: @meta7solutions

I

\

Thursday: 19 May, 2016

Introduction

\\\\\\\‘

Daniel Morgan

& Oracle ACE Director

= Oracle Educator
. Curriculum author and primary program instructor at University of Washington
9 Consultant: Harvard University
= University Guest Lecturers
= APAC: University of Canterbury (N2)
= EMEA: University of Oslo (Norway)
= Latin America: Universidad Latina de Panama and Technologico de Costa Rica
* |T Professional
= First computer: IBM 360/40 in 1969: Fortran IV
= QOracle Database since 1988-9
= Beta Tester 10g, 119, 12c, TimesTen, GoldenGate
= The Morgan behind www.morganslibrary.org
= Member Oracle Data Integration Solutions Partner Advisory Council
» Co-Founder International GoldenGate Oracle Users Group

= Principal Adviser: Forsythe Meta’/

META7 email: dmorgan@forsythe.com
Solutions for the Red Stack Twitter: @damorganl2c

System/370-145 system console

\\\\\\\‘

My Websites: Morgan's Library

Morgan's Libeary - =
Morgan®s Library e

International Oracle Events 2015-2016 Calendar
May Jun Jul Aug Sep Oct How Dec Jan ‘
The library is a spam-free on-line resource with code demos for DBAs and Developers.
If you would like to see new Oracle database funtionality added to the library ... just email us.
Oracle 12.1.0.2.0 has been released and new features will be showing up for many weeks.
The first updates have already been made.

Hoa ' MadDog Morgan
: ™1 10UG, Chicago, Illinois - Mar 10

o " uTOUG, Salt Lake City, Utah - Mar 11.12

* iS QUGH, Oslo, Norway - Mar 12:14

. ﬂcmlaborahe Las as, Nevada - Apr 12-16
o ™ nYoUuG, Now York, NY - May 18

. GLOC, Cleveland, Ohio - May 19-20

Next Event: 27 January, Redwood Shores, CA Click on the map to find an event near you
Library News ACE News
* Morgan's Blog ’

Resources

:

How Can 1?7

@ Would you like to become an Oracle ACE? A
® Join the Western Washi n OUG
. P Learn more about becoming an ACE
Morgan's Oracle Podcast
| * US Govt Mil. STIGs (Security Checklists) ® ACE Directory
® Bryn Llewellyn's PL/ISQL White Paper ® ACE Gooale Map
. 's Editioni i ® ACE Program
aboard USA-71 ® Explain Plan White Pa ® Stanley's Bl
A ORACLE' ~ Congratulations to our newest
[ACE Director ACE Director Jim Czuprynski
”’ AREDECINT SANS FRONTMRES
{ DOCTORS WITHOUT BORDERS

META; Solutions for the Red Stack

\\\\\\\‘

What Meta7 Brings To The Party

* The "Oracle Only" division of Forsythe focused on only the Red Stack

= Ateam of skilled professionals with
= Extensive experience across multiple industries

= Deep specialization in core Oracle technologies
= Hardware
= Licensing
» Professional Services
= (0% off-shoring: All work performed by US residents

= Reliable on-time and on-budget delivery
= Corporate headquarters in Chicago, lllinois
= New, State-of-the-Art Technology Evaluation Center

= Secure hosting and Managed Services in our own Tier 3 data center on the
same power grid and fibre as O'Hare airport

= Flexible financial support
8 Platinum
ORACLE Partner

META7 www.meta7solutions.com
Solutions for the Red Stack @meta7so|utions

\\\\\\\‘

ol

What Meta7 Brings To The Party .

Cloud Solutions Oracle Optimized Solution for Enterprise Cloud Infrastructure
Database Oracle Database 11g
Database Oracle Database 11g Data Warehousing
Database Oracle Database 12c
Database Oracle Enterprise Manager 12c
Database Oracle Real Application Clusters 11g
Engineered Systems Oracle Database Appliance Specialization
Engineered Systems Oracle Exadata Database Machine
Industries Professional Services
Middleware GoldenGate 12.2
Servers and Storage Systems Oracle Linux 5
Servers and Storage Systems Oracle Solaris 10
Servers and Storage Systems Oracle Solaris 11
Servers and Storage Systems Oracle VM 3
Servers and Storage Systems Oracle ZFS Storage
Servers and Storage Systems SPARC Enterprise Entry-Midrange M-Series Servers

Servers and Storage Systems SPARC T2 and T3-Based Servers
Servers and Storage Systems SPARC T4-Based Servers
Servers and Storage Systems SPARC T5-Based Servers
Servers and Storage Systems Sun ZFS Storage Appliance

META; Solutions for the Red Stack

\\\\\\\‘

-

/ ----------

- -

Lo lon = 1 . T35 R e
L e L b | P | o e o DN s L
e [¥4 ;&:’ q.‘*.r_’. '.","‘?:‘b_f"'h 4 B 1 - J Sy -':-";‘_;'.';'?‘?{*f..:'“ B S i~ By S
Y i e ¥

— & =8 s
FRE ;“,-"-.,:_5,. }é,, R S B e
H e ” o B e = Wl L] . S >
e ot L™ SR SRt R R = £ RS g v cp e s
- ._..‘.___ e pRES % .v: :.- s iy : . ‘.._’-J. ':'-r. = (-'i“ o A P | ’ . & &
L - — Taee = —— < .-..&... - _— - -y -
< -
- — - -

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949
% t,‘ | skype: damorganllg
§~ Pil twitter: @meta7solutions

I

- « an G2 7 =<l
> O HilH -
- t. ’ \»‘ - - L —la - gy p— -n U e
» — .ﬂ..w..\ fiJ e o 1“_ .”- a | - mw
) p - "t~ CO CO e T
u m...w LJCa .m.:u CH "™ Y ...”.u -
- ! - =
O == Y= A
o A (S - - e ﬁllu - - ”v (
e i‘ TS e- p— e) e W= hl - -n.Uu -
. . - cy = ccoo. - Jd o= CJ C) Wl g
= il =l ~eibethag - Ral
- S - - - _Il.v -0 - : LY §o oo N
el = Rl o o Y R = o I
y & LJ - Fe v GO - - &3 CJ -
LT AQE QYN Es00C
LAy == O s bl mw B S
Q2 .HU LJd "2 LICD A 7 o ™
o= == CJ *- <2 o 2 &2 -4 L

i
'
' MO N
Uouu
1
_

e'Database S

[,

ﬁv, F \ -

—— - .,,.r.l.w 4
e '“.zg.m.
- a - - y , »g_lm
e ; = © T O
CO®o S n
a'_a—/
: " _.g 6ga
. rwort
- 4 (@])
- - - - Malmm
e Am+d@
- W O o
. — - QD ”%.e
G .mlw,m
e . . . =y £ =
- e - ..w.

Daniel A. Morgan

L email; dmorgan@forsythe. COM

mobile: +1 206-669-2949
skype: damorganllg
twitter: @meta/solutions

i

VLDBs and
Database

Oracle DBaaS Migration Road

”~

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949

Hin

skype: damorganllg
twitter: @meta7solutions

-

-

. \' 4

T Fire Fightingw
| s a ¥ y

dmorgan@forsythe.com
1 206-669-2949

damorganllg

=

@ eta7solutions

L

Travel Log: 2010 - Lima Peru

\\\\\\\‘

META; Solutions for the Red Stack

=
w

Travel Log: 2013 - Beljing China

Y "

' | i » \. - .A o
(M EAR R E 5] :

META; Solutions for the Red Stack

\\\\\\\‘

=
a1

Travel Log: 2014 - Galapagos Islands Ecuador
. - ’ 'Pﬁ///%

i

16

META; Solutions for the Red Stack

Travel Log: 2015 - Turkey

META; Solutions for the Red Stack

\\\\\\\‘

17

Travel Log: 2016 - California

META Solutions for the Red Stack

Content Density Warning

Take Notes ... Ask Questions

META; Solutions for the Red Stack

\\\\\\\‘

=
©

Why Am | Focusing On INSERT Statements?

META; Solutions for the Red Stack

Because no one else is

Because Oracle University doesn't teach this material

Because there are 17 pages in the 12c docs on INSERT statements
Because almost no one knows the full syntax for basic DML statements

Because we have now spent more than 30 years talking about performance
tuning and yet the number one conference and training topic remains tuning
which proves that we need to stop focusing on edge cases and focus, instead,
on the basics

Because explain plans, AWR Reports, and trace files will never fix a problem if
you don't know the full range of syntaxes available

Because the best way to achieve high performance is to choose techniques
that reduce resource utilization

\\\\\\\‘

N
o

Insert Statements

\\\\\\\‘

SQL DML

= DML stands for Data Manipulation Language

= DML is a direct reference to the following SQL statements
= INSERT
= UPDATE
= DELETE
= MERGE

META; Solutions for the Red Stack

\\\\\\\‘

N
N

SQL INSERT Statement Topics

= Basic Insert

= INSERT WHEN

= INSERT ALL

= INSERT ALL WHEN

= INSERT FIRST WHEN

= INSERT INTO A SELECT STATEMENT
= INSERT WITH CHECK OPTION

= View Inserts

= Editioning View Inserts

= Partitioned Table Insert

META; Solutions for the Red Stack

Tables with Virtual Columns Insert
Tables with Hidden Columns Insert
Create Table As Inserts

Nested Table Inserts

VARRAY Table Inserts

= MERGE Statement Insert

\\\\\\\‘

N
w

PL/SQL INSERT Statement Topics

= Record inserts

* FORALL INSERTs

» FORALL MERGE Inserts

= LOB Inserts

= DBMS_SQL Dynamic Inserts

= Native Dynamic SQL Inserts

= RETURNING Clause with a Sequence

* RETURNING Clause with an Identity Column

META; Solutions for the Red Stack

\\\\\\\‘

N
I

Performance Tuning INSERT Statement Topics

= Too Many Columns

= Column Ordering

= Aliasing and Fully Qualified Names
= Implicit Casts

= APPEND hint

= APPEND_VALUES hint

= DBMS ERRLOG bullt-in package
" CHANGE DUPKEY ERROR INDEX hint
= IGNORE ON DUPKEY INDEX hint

= DBMS_STATS
= |nsert Statement Most Common Error

META; Solutions for the Red Stack

\\\\\\\‘

N
a1

SQL Insert Statements

\\\\\\\‘

Basic INSERT Statement ¢

» Use this syntax to perform inserts into a single column in a heap, global

temporary, IOT, and most partitioned tables

INSERT INTO <table name>
(<column name>)

VALUES

(<value>) ;

CREATE TABLE state (
state abbrev VARCHAR2(2)) ;

INSERT INTO state
(state_abbrev)
VALUES

('NY');

COMMIT;

SELECT * FROM state;

META; Solutions for the Red Stack

\\\\\\\‘

N
~

Basic INSERT Statement ¢

» Use this syntax to perform inserts into a single column in a heap, global
temporary, IOT, and most partitioned tables

INSERT INTO <table name>

(<column name>, <column name> [,...])
VALUES

(<value>, <value> [,<value>]) ;

CREATE TABLE state (
state_abbrev VARCHAR2 (2),
state name VARCHAR2 (30)) ;

INSERT INTO state
(state_abbrev, state name)
VALUES

('"NY', 'New York');
COMMIT;

SELECT * FROM state;

META; Solutions for the Red Stack

\\\\\\\‘

N
(oe]

INSERT WHEN

= Use this syntax to conditionally insert rows into multiple tables

INSERT

WHEN (<condition>) THEN
INTO <table name> (<column_list>)
VALUES (<values_list>)

WHEN (<condition>) THEN
INTO <table name> (<column_list>)
VALUES (<values_list>)

ELSE
INTO <table name> (<column_list>)
VALUES (<values_list>)

SELECT <column_list> FROM <table name>;

INSERT

WHEN (deptno=10) THEN
INTO emp 10 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

WHEN (deptno=20) THEN
INTO emp 20 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

WHEN (deptno=30) THEN
INTO emp 30 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

ELSE
INTO leftover (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

SELECT * FROM emp;

META; Solutions for the Red Stack

\\\\\\\‘

N
(o]

INSERT ALL

= Use this syntax to unconditionally insert data into multiple tables

= Note that columns can go into one target table, multiple target tables, or all
target tables

INSERT ALL
INTO <table name> VALUES <column name list)
INTO <table name> VALUES <column name list)

<SELECT Statement>;

INSERT ALL
INTO ap_cust VALUES (customer_id, program id, delivered date)
INTO ap_orders VALUES (order_date, program id)
SELECT program id, delivered date, customer_ id, order_ date
FROM airplanes;

META; Solutions for the Red Stack

\\\\\\\‘

w
o

INSERT ALL WHEN

= With "ALL", the default value, the database evaluates each WHEN clause
sequentially and can inserts with each row multiple times if there are multiple

matches

INSERT ALL

WHEN (<condition>) THEN
INTO <table name> (<column_ list>)
VALUES (<values_ list>)

WHEN (<condition>) THEN
INTO <table name> (<column_ list>)
VALUES (<values_list>)

ELSE
INTO <table name> (<column_ list>)
VALUES (<values_ list>)

SELECT <column_ list> FROM <table name>;

META; Solutions for the Red Stack

INSERT ALL

WHEN (deptno=10) THEN
INTO emp 10 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

WHEN (deptno=20) THEN
INTO emp 20 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

WHEN (deptno<=30) THEN
INTO emp 30 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

ELSE
INTO leftover (empno,ename, job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)

SELECT * FROM emp;

\\\\\\\‘

w
=

INSERT FIRST WHEN

= With "FIRST" the database evaluates each WHEN clause in the order in which

It appears in the statement and only performs an insert for the first match

INSERT FIRST

WHEN <condition> THEN

INTO <table name> VALUES <column name list)
INTO <table name> VALUES <column name list)

<SELECT Statement>;

INSERT FIRST
WHEN customer id < 'I' THEN

INTO cust_ah

VALUES (customer_ id, program id, delivered date)
WHEN customer_ id < 'Q' THEN

INTO cust_ip

VALUES (customer_ id, program id, delivered date)
WHEN customer id > 'PZZZ' THEN

INTO cust_qgz

VALUES (customer id, program id, delivered date)
SELECT program id, delivered date, customer id, order date
FROM airplanes;

META; Solutions for the Red Stack

\\\\\\\‘

w
N

INSERT Into a SELECT Statement

» Use this syntax to INSERT rows into a table a part of a SELECT statement
from itself or one or more different tables

INSERT INTO <table_name>
(<SELECT Statement>) ;

CREATE TABLE state (

zip code VARCHAR2 (5) NOT NULL,
state_abbrev VARCHAR2 (2) NOT NULL,
city name VARCHAR2 (30)) ;

INSERT INTO (
SELECT deptno, dname, loc
FROM dept)
VALUES (99, 'TRAVEL', 'SEATTLE');

META; Solutions for the Red Stack

\\\\\\\‘

w
w

INSERT with Check Option

= Use this syntax to limit inserted rows to only those that pass CHECK OPTION

validation

INSERT INTO (

<SQL statement> WITH CHECK OPTION)
VALUES

(value list);

INSERT INTO (

SELECT deptno, dname, loc

FROM dept

WHERE deptno < 30 WITH CHECK OPTION)
VALUES (99, 'TRAVEL', 'SEATTLE');

META; Solutions for the Red Stack

\\\\\\\‘

w
N

INSERTINng into a View

= Evaluate whether a view column is insertable

= Views with aggregations, CONNECT BY, and other syntaxes may not be
Insertable

desc cdb_updatable columns

SELECT cuc.con_id, cuc.owner, cuc.insertable, COUNT (*)
FROM cdb_updatable columns cuc
WHERE (cuc.con_id, cuc.owner, cuc.table name) IN
(SELECT cv.con_id, cv.owner, cv.view_name
FROM cdb_views cv)
GROUP BY cuc.con_id, cuc.owner, cuc.insertable
ORDER BY 1,2,3;

CON_ID OWNER INS COUNT (*)
2 ORDSYS NO 4
2 ORDSYS YES 4
2 SYS NO 45190
2 SYS YES 22415
2 SYSTEM NO 172
2 SYSTEM YES 14
2 WMSYS NO 736
2 WMSYS YES 160

META; Solutions for the Red Stack

\\\\\\\‘

w
o1

INSERTINng into an Editioning View

= All editioning views are insertable ... but be sure you are in the correct edition

SQL> CREATE EDITION demo_ed;

SQL> CREATE OR REPLACE EDITIONING VIEW test AS
2 SELECT program id, line number
3 FROM airplanes;

View created.

SQL> ALTER SESSION SET EDITION=demo_ed;

Session altered.

SQL> CREATE OR REPLACE EDITIONING VIEW test AS
2 SELECT line number, program id
3 FROM airplanes;

View created.

SQL> SELECT * FROM user_ editioning views_ae;

VIEW_NAME TABLE NAME EDITION_ NAME
TEST AIRPLANES ORASBASE
TEST AIRPLANES DEMO_ED

META; Solutions for the Red Stack

\\\\\\\‘

w
»

INSERTINg into a Partitioned Table

= With HASH, LIST, and RANGE partitioning any INSERT statement will work
= With Partition by SYSTEM you must name the partition

CREATE TABLE syst part (
tx_id NUMBER(5),
begdate DATE)

PARTITION BY SYSTEM (
PARTITION pl1,

PARTITION p2,

PARTITION p3) ;

INSERT INTO syst part VALUES (1, SYSDATE-10);
*
ERROR at line 1:
ORA-14701: partition-extended name or bind variable must be used
for DMLs on tables partitioned by the System method
INSERT INTO syst part PARTITION (pl) VALUES (1, SYSDATE-10);
INSERT INTO syst part PARTITION (p2) VALUES (2, SYSDATE);
INSERT INTO syst part PARTITION (p3) VALUES (3, SYSDATE+10);

SELECT * FROM syst part PARTITION (p2) ;

META; Solutions for the Red Stack

\\\\\\\‘

w
~

INSERTINg into a Table With Virtual Columns

» Virtual columns will appear in a DESCRIBE statement but
yOU cannot insert values into them

CREATE TABLE vcol (

salary NUMBER (8) ,

bonus NUMBER (3) ,

total comp NUMBER(10) AS (salary+bonus)) ;

desc vcol

SELECT column_id, column_name, virtual column
FROM user_ tab_cols
WHERE table name = 'VCOL'

INSERT INTO vcol

(salary, bonus, total comp)
VALUES

(1,2,3);

INSERT INTO vcol
(salary, bonus)
VALUES

(1,2);

SELECT * FROM vcol;

META; Solutions for the Red Stack

\\\\\\\‘

w
oo

INSERTINng into a Table with Invisible Columns

* [nvisible columns will not appear in a DESCRIBE statement but you can insert

Into them directly

CREATE TABLE vis (
rid NUMBER,
testcol VARCHAR2 (20)) ;

CREATE TABLE invis (
rid NUMBER,
testcol VARCHAR2 (20) INVISIBLE) ;

desc vis

desc invis

SELECT table name, column name, hidden_column

FROM user_ tab cols
user_ tab columns
WHERE table name like '%VIS';

INSERT INTO invis
(rid, testcol)
VALUES

(1, 'TEST');

SELECT * FROM invis;

SELECT rid, testcol FROM invis;

-- not found in

META; Solutions for the Red Stack

\\\\\\\‘

w
©

CREATE TABLE as an INSERT Statement

= Use this syntax to create a new table as the result of a SELECT statement
from one or more source tables

CREATE TABLE <tab1e_name> AS
<SELECT Statement>;

CREATE TABLE column_subset AS
SELECT coll, col3, col5
FROM servers;

desc column_subset

SELECT COUNT (*)
FROM column_subset;

META; Solutions for the Red Stack

\\\\\\\‘

N
o

Nested Table Insert

= Cast column values using the object column's data type

CREATE OR REPLACE NONEDITIONABLE TYPE CourselList AS TABLE OF VARCHAR2 (64) ;
/

CREATE TABLE department (

name VARCHAR2 (20) ,

director VARCHAR2 (20),

office VARCHAR2 (20) ,

courses Courselist)

NESTED TABLE courses STORE AS courses_tab;

INSERT INTO department
(name, director, office, courses)
VALUES
('English', 'Tara Havemeyer',6 'Breakstone Hall 205', Courselist(
'Expository Writing',
'Film and Literature'’',
'Modern Science Fiction',
'Discursive Writing',
'Modern English Grammar',
'Introduction to Shakespeare',
'Modern Drama',
'The Short Story',
'The American Novel')) ;

META; Solutions for the Red Stack

\\\\\\\‘

N
=

VARRAY Table Insert

= Cast column values using the VARRAY column's data type

CREATE OR REPLACE TYPE ProjectList AS VARRAY (50) OF Project;
/

CREATE TABLE department (
dept id NUMBER(2),

dname VARCHAR2 (15) ,
budget NUMBER (11,2),
projects Projectlist) ;

INSERT INTO department

(dept_id, dname, budget, projects)

VALUES

(30, 'Accounting', 1205700,

ProjectList (Project(l, 'Design New Expense Report', 3250),
Project (2, 'Outsource Payroll',6 12350),

Project (3, 'Evaluate Merger Proposal', 2750),

Project (4, 'Audit Accounts Payable',6 1425)));

META; Solutions for the Red Stack

\\\\\\\‘

N
N

MERGE Statement Insert

= Use MERGE statements where an insert or other DML action is conditioned
on the results of a SELECT statement result match

MERGE INTO bonuses b
USING (
SELECT employee id, salary, dept no
FROM employee
WHERE dept no =20) e
ON (b.employee id = e.employee id)
WHEN MATCHED THEN
UPDATE SET b.bonus = e.salary * 0.1
DELETE WHERE (e.salary < 40000)
WHEN NOT MATCHED THEN
INSERT (b.employee id, b.bonus)
VALUES (e.employee id, e.salary * 0.05)
WHERE (e.salary > 40000) ;

META; Solutions for the Red Stack

\\\\\\\‘

N
w

PL/SQL Insert Statements

\\\\\\\‘

Record Inserts

= Use this syntax to insert based on an array that matches the target table
rather than named individual columns

= Adding a new column to the table will not break the statement

CREATE TABLE t AS
SELECT table_name, tablespace_name
FROM all_ tables;

SELECT COUNT (*)
FROM t;

DECLARE
trec t%ROWTYPE;

BEGIN
trec.table name := 'NEW';
trec.tablespace name := 'NEW_TBSP';

INSERT INTO t
VALUES trec;

COMMIT;
END;
/

SELECT COUNT (*) FROM t;

META; Solutions for the Red Stack

\\\\\\\‘

N
(6)]

FORALL INSERTS a3

= Use this syntax to greatly enhance
performance but be sure you
understand the concept of DIRECT
LOAD INSERTSs

= With this syntax | can insert
500,000 rows per second on
my laptop
= [earn
= Limits Clause
= Save Exceptions
= Partial Collections
= Sparse Collections
= |n Indices Of Clause

META; Solutions for the Red Stack

CREATE OR REPLACE PROCEDURE fast way AUTHID CURRENT USER IS
TYPE myarray IS TABLE OF parent3%ROWTYPE;
1 data myarray;

CURSOR r IS
SELECT part _num, part name
FROM parent;

BatchSize CONSTANT POSITIVE := 1000;
BEGIN
OPEN r;
LOOP
FETCH r BULK COLLECT INTO l_data LIMIT BatchSize;

FOR j IN 1 .. 1 data.COUNT LOOP
1l data(j) .part num := 1 data(]j) .part num * 10;
END LOOP;

FORALL i IN 1..1 data.COUNT
INSERT INTO child VALUES 1 data(i);

EXIT WHEN 1 data.COUNT < BatchSize;
END LOOP;
COMMIT;
CLOSE «r;
END fast way;
/

\\\\\\\‘

N
o

FORALL INSERTS ¢35

= Use this syntax to greatly enhance
performance but be sure you
understand the concept of DIRECT
LOAD INSERTSs

= With this syntax | can insert
500,000 rows per second on
my laptop
= [earn
= Limits Clause
= Save Exceptions
= Partial Collections
= Sparse Collections
= |n Indices Of Clause

META; Solutions for the Red Stack

CREATE OR REPLACE PROCEDURE fast way AUTHID CURRENT USER IS
TYPE PartNum IS TABLE OF parent.part num$TYPE
INDEX BY BINARY INTEGER;

pnum_t PartNum;

TYPE PartName IS TABLE OF parent.part name$TYPE
INDEX BY BINARY INTEGER;

pnam_t PartName;

BEGIN
SELECT part_num, part name
BULK COLLECT INTO pnum t, pnam t
FROM parent;

FOR i IN pnum t.FIRST .. pnum_t.LAST LOOP
pnum_t (i) := pnum_t(i) * 10;
END LOOP;

FORALL i IN pnum_ t.FIRST .. pnum_t.LAST
INSERT INTO child
(part_num, part name)
VALUES
(pnum_t (i), pnam t(i));
COMMIT ;
END fast way;
/

\\\\\\\‘

N
\‘

FORALL INSERTS @3

= Use this syntax to greatly enhance

performance but be sure you

understand the concept of DIRECT

LOAD INSERTSs

= With this syntax | can insert
500,000 rows per second on
my laptop
= [earn
= Limits Clause
= Save Exceptions
= Partial Collections
= Sparse Collections
= |n Indices Of Clause

META; Solutions for the Red Stack

CREATE OR REPLACE PROCEDURE fast way AUTHID CURRENT USER IS
TYPE parent rec IS RECORD (

part num dbms_sql.number table,

part_name dbms_sql.varchar2 table) ;

p_rec parent_ rec;

CURSOR c IS
SELECT part num, part name FROM parent;

1 done BOOLEAN;
BEGIN
OPEN c;
LOOP
FETCH c BULK COLLECT INTO p rec.part num, p rec.part name
LIMIT 500;
1l done := c%NOTFOUND;

FOR i IN 1 .. p _rec.part num.COUNT LOOP
p_rec.part num(i) := p rec.part num(i) * 10;
END LOOP;

FORALL i IN 1 .. p rec.part num.COUNT
INSERT INTO child

(part_num, part name)

VALUES

(p_rec.part num(i) , p_rec.part name(i));

EXIT WHEN (1_done);
END LOOP;
COMMIT;
CLOSE c;
END fast way;
/

\\\\M

FORALL MERGE Inserts

= Use this syntax to execute a MERGE statement using data in an array data
(most likely selected using BULK COLLECT)

CREATE OR REPLACE PROCEDURE forall_merge AUTHID CURRENT USER IS
TYPE ridVal IS TABLE OF forall_tgt.rid%TYPE

INDEX BY BINARY INTEGER;

1l data ridval;
BEGIN

SELECT rid BULK COLLECT INTO l_data

FROM forall src;

FORALL i IN 1 data.FIRST .. 1 data.LAST
MERGE INTO forall tgt ft
USING (

SELECT rid

FROM forall src fs

WHERE fs.rid = 1 data(i)) al
ON (al.rid = ft.rid)
WHEN MATCHED THEN

UPDATE SET upd = 'U'
WHEN NOT MATCHED THEN

INSERT (rid, ins, upd)

VALUES (1 _data(i), 'I', NULL);

COMMIT ;

END forall merge;
/

META; Solutions for the Red Stack

\\\\\\\‘

N
©

LOB Insert

= When creating LOB objects be
sure to use SecureFiles and be
sure that you understand
PCTVERSION, CHUNK, and
other storage parameters

» Failure to understand how
LOBSs process undo can result
IN massive waste of space

META; Solutions for the Red Stack

DECLARE

src_file BFILE;

dst file BLOB;

lgh_file BINARY INTEGER;
retval VARCHAR2 (30) ;

BEGIN

src_file := bfilename ('CTEMP', 'sphere.mpg')

INSERT INTO sct

(rid, bcol)

VALUES

(1, EMPTY BLOB())

RETURNING bcol INTO dst file;

SELECT bcol
INTO dst_file
FROM sct
WHERE rid =1
FOR UPDATE;

dbms_lob.fileopen(src_file, dbms_lob.file readonly) ;

lgh file := dbms_lob.getlength(src_file);

dbms_lob.loadFromFile(dst file, src_file, 1lgh file);

UPDATE sct
SET bcol = dst file
WHERE rid = 1;

dbms_lob.setContentType (dst_file, 'MPG Movie');
retval := dbms_lob.getContentType (dst_file) ;
dbms_output. put line (retval) ;

dbms lob.fileclose(src_file) ;

END load file;

/

\\\\\\\‘

a1
o

DBMS_ SQL Dynamic Inserts

= DBMS_SQL is the legacy implementation of dynamic SQL in the Oracle
database introduced in version 7

CREATE OR REPLACE PROCEDURE single row_insert(cl NUMBER, c2 NUMBER, r OUT NUMBER) IS

c NUMBER;
n NUMBER;
BEGIN
c := dbms_sql.open_cursor;
dbms_sql.parse(c, 'INSERT INTO tab VALUES (:bndl, :bnd2) ' || 'RETURNING cl*c2 into :bnd3',6 2);

dbms_sql .bind variable(c, 'bndl', cl);
dbms_sql.bind variable(c, 'bnd2',6 c2);
dbms_sql.bind variable(c, 'bnd3', r);

n := dbms_sqgl.execute(c);

dbms_sql.variable value(c, 'bnd3', r); -- get value of outbind
dbms_sql.close_cursor(c) ;
END single_row_insert;

/

\\\\\\\‘

META; Solutions for the Red Stack

S
=

Native Dynamic SQL Inserts

= Native Dynamic SQL has largely replaced DBMS_SQL as it is robust and
more easily coded

BEGIN
FOR i IN 1 .. 10000
LOOP
EXECUTE IMMEDIATE 'INSERT INTO t VALUES (:x)'
USING i;
END LOOP;
END;
/

META; Solutions for the Red Stack

\\\\\\\‘

a1
N

RETURNING Clause with a Sequence

= Use this syntax to return values from an insert statement unknown to the
program inserting the row

INSERT INTO <table_name>
(column list)
VALUES
(values_list)
RETURNING <value_ name>
INTO <variable name>;

DECLARE
X emp.empno3TYPE;
r rowid;
BEGIN
INSERT INTO emp
(empno, ename)
VALUES
(seq_emp.NEXTVAL, 'Morgan')
RETURNING rowid, empno
INTO r, x;

dbms_output.put line(r);
dbms_output.put line (x);
END;
/

META; Solutions for the Red Stack

\\\\\\\‘

()]
w

RETURNING Clause with an Identify Column

= Use this syntax to return values from an insert statement unknown to the
program inserting the row

CREATE TABLE idcoltab (
rec_id NUMBER GENERATED ALWAYS AS IDENTITY,
coltxt VARCHAR2 (30));

DECLARE
rid idcoltab.rec id3%TYPE;
BEGIN
INSERT INTO idcoltab
(coltxt)
VALUES
('Morgan')
RETURNING rec_id
INTO rid;

dbms_output.put_line(rid);
END ;
/

META; Solutions for the Red Stack

\\\\\\\‘

(6]
i

RETURNING Clause with Native Dynamic SQL

= Use this syntax to return values from an insert statement created using Native

Dynamic SQL

DECLARE

sql_stmt VARCHAR2 (128);

dno dept ret.deptno%TYPE;
BEGIN

sql stmt := 'INSERT INTO dept ret (deptno, dname, location) '

'VALUES (seq.NEXTVAL, ''PERSONNEL'', ''SEATTLE'') '

'RETURNING deptno INTO :retval';
EXECUTE IMMEDIATE sql_stmt RETURNING INTO dno;
dbms output.put line (TO_CHAR(dno)) ;
END ;
/

META; Solutions for the Red Stack

\\\\\\\‘

o1
o1

Performance Tuning Insert Statements

\\\\\\\‘

Considerations

= Table structure
= |ndexes
= Triggers

= [tis always more efficient if you code it right once rather than making the
database fix it thousands or millions of times

META; Solutions for the Red Stack

\\\\\\\‘

a1
~

Too Many Columns

META; Solutions for the Red Stack

Oracle claims that a table can contain up to 1,000 columns: It is not true. No
database can do 1,000 columns no matter what their marketing claims may be

The maximum number of real table columns is 255

Break the 255 barrier and optimizations such as advanced and hybrid
columnar compression no longer work

A 1,000 column table is actually four segments joined together behind the
scenes just as a partitioned table appears to be a single segment but isn't

Be suspicious of any table with more than 50 columns. At 100 columns it is
time to take a break and re-read the Codd-Date rules on normalization

Think vertically not horizontally

Be very suspicious of any table with column names in the form "SPARE1",
"SPAREZ2", "..."

The more columns a table has the more cpu is required when accessing

columns to the right (as the table is displayed in a SELECT * query ... or at the bottom if the table is
displayed by a DESCribe)

\\\\\\\‘

o1
oo

Column Ordering a)

= Computers are not humans and tables are not paper forms

= CBO's column retrieval cost
= Qracle stores columns in variable length format
= Each row is parsed in order to retrieve one or more columns

» Each subsequently parsed column introduces a cost of 20 cpu cycles regardless of
whether it is of value or not

» These tables will be accessed by person_id or state: No one will ever put the
address2 column into the WHERE clause as a filter ... they won't filter on

middle initial either

CREATE TABLE customers (
person_id NUMBER,

first name VARCHARZ2(30) NOT NULL,
middle init VARCHAR2 (2),

last name VARCHAR2 (30) NOT NULL,

addressl VARCHAR2 (30) ,
address2 VARCHAR2 (30) ,
city VARCHAR2 (30) ,
state VARCHAR2 (2)) ;

Common Design

CREATE TABLE customers (
person_id NUMBER,

last_name VARCHAR2 (30)
state VARCHAR2 (2)
city VARCHAR2 (30)

first name VARCHAR2 (30)

addressl VARCHAR2 (30) ,
address2 VARCHAR2 (30) ,
middle_init VARCHAR2(2)) ;

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

Optimized Design

META; Solutions for the Red Stack

\\\\\\\‘

al
©

Column Ordering e

= Proof column order matters

CREATE TABLE read test AS

SELECT *

FROM apex 040200.wwv_flow_page plugs
WHERE rownum = 1;

SQL> explain plan for
2 select * from read test;

PLAN TABLE OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time
| 0 | SELECT STATEMENT | | 1| 214K| 2 (0)| 00:00:01 |
| 1 | TABLE ACCESS FULL| READ_TEST | 1| 214K| 2 (0)| 00:00:01 |

-- fetch value from column 1

Final cost for query block SEL$1 (#0) - All Rows Plan:
Best join order: 1
Cost: 2.0002 Degree: 1 Card: 1.0000 Bytes: 13
Resc: 2.0002 Resc _io: 2.0000 Resc_cpu: 7271
Resp: 2.0002 Resp io: 2.0000 Resc_cpu: 7271

-- fetch value from column 193

Final cost for query block SEL$1 (#0) - All Rows Plan:
Best join order: 1
Cost: 2.0003 Degree: 1 Card: 1.0000 Bytes: 2002
Resc: 2.0003 Resc_io: 2.0000 Resc_cpu: 11111
Resp: 2.0003 Resp io: 2.0000 Resc_cpu: 11111

META; Solutions for the Red Stack

\\\\\\\‘

60

Aliasing and Fully Qualified Names

= When you do not use fully qualified names Oracle must do the work for you
= You write code once ... the database executes it many times

SELECT DISTINCT s.srvr_id
FROM servers s, serv_inst i
WHERE s.srvr_id = i.srvr_id;

SELECT DISTINCT s.srvr_ id
FROM uwclass.servers s, uwclass.serv_inst i
WHERE s.srvr id = i.srvr_ id;

META; Solutions for the Red Stack

\\\\\\\‘

(o2}
=

Implicit Casts

= Code that does not correctly define data types will either fail to run or run very
Inefficiently

The following example shows both the correct way and the incorrect way to
work with dates. The correct way is to perform an explicit cast

SQL> create table t (
2 datecol date);

Table created.

SQL> insert into t wvalues ('01-JAN-2012") ;

1 row created.

SQL> insert into t values (TO_DATE('01-JAN-2012"'));

1l row created.

\\\\\\\‘

META; Solutions for the Red Stack

(o))
N

Jonathan Lewis' Rules for Hints

1. Don't
2. If you must use hints, then assume you've used them incorrectly

3. On every patch or upgrade to Oracle, assume every piece of hinted SQL is going to do
the wrong thing

Because of (2) above; you've been lucky so far, but the patch/upgrade lets you
discover your mistake

4. Every time you apply some DDL to an object that appears in a piece of hinted SQL
assume that the hinted SQL is going to do the wrong thing

Because of (2) above; you've been lucky so far, but the structural change lets you
discover your mistake

\\\\\\\‘

META; Solutions for the Red Stack

(o2}
w

APPEND Hint

» The APPEND hint enables direct-path INSERT if the database is running in
serial mode. The database is in serial mode if you are not using Enterprise

Edition. Conventional INSERT is the default in serial mode, and direct-path
INSERT Is the default in parallel mode

* In direct-path INSERT data is appended above the high-water mark potentially
Improving performance

INSERT /*+ APPEND */ INTO t
SELECT * FROM servers;

\\\\\\\‘

META; Solutions for the Red Stack

(o))
I

APPEND_VALUES Hint

= Use this new 12c¢ hint

Instructs the optimizer to
use direct-path INSERT
with the VALUES clause

* |f you do not specify this

hint, then conventional
INSERT Is used

= This hint is only
supported with the
VALUES clause of the
INSERT statement

= |f you specify it with an
Insert that uses the
subquery syntax it is
ignored

META; Solutions for the Red Stack

SQL> EXPLAIN PLAN FOR
2 INSERT INTO t
3 VALUES
4 ('XYZ');

SQL> SELECT * FROM TABLE (dbms_ xplan.display) ;

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0	INSERT STATEMENT		1	100	1 (0)	00:00:01
1	LOAD TABLE CONVENTIONAL	T				

SQL> EXPLAIN PLAN FOR
2 INSERT /*+ APPEND VALUES */ INTO t
3 VALUES
4 ('XYZ');

SQL> SELECT * FROM TABLE (dbms xplan.display) ;

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0	INSERT STATEMENT		1	100	1 (0)] 00:00:01	
1	LOAD AS SELECT	T				
2	BULK BINDS GET					I

\\\\\\\‘

(o2}
a1

CHANGE_DUPKEY_ERROR_INDEX Hint

= Use this hint to unambiguously identify a unique key violation for a specified
set of columns or for a specified index

= When a unique key violation occurs for the specified index, an ORA-38911
error Is reported instead of an ORA-00001

INSERT /*+ CHANGE_DUPKEY_ERROR_INDEX (T, TESTCOL) */ INTO t
(testcol)

VALUES

(lAl) ,.

META; Solutions for the Red Stack

\\\\\\\‘

o2}
»

IGNORE_ON_DUPKEY_INDEX Hint

* This hint applies only to single-table INSERT operations

* |t causes the statement to ignore a unique key violation for a specified set of
columns or for a specified index

= When a unique key violation is encountered, a row-level rollback occurs and
execution resumes with the next input row

= |f you specify this hint when inserting data with DML error logging enabled,
then the unique key violation is not logged and does not cause statement
termination

INSERT /*+ IGNORE ROW_ON DUPKEY INDEX (T, UC_T_TESTCOL)) */ INTO t
(testcol)
VALUES

(1)

META; Solutions for the Red Stack

\\\\\\\‘

(o))
~

DBMS_ERRLOG a2

abort and rollback

Tables with LONG, CLOB, BLOB, BFILE, and ADT data types are not

supported

LOG ERRORS effectively it turns
array processing into single row

processing, so it adds an
expense at the moment of

Inserting, even though it saves
you the overhead of an array

rollback if a duplicate gets
Into the data (Jonathan Lewis)

META; Solutions for the Red Stack

CREATE TABLE t AS
SELECT *

FROM all tables
WHERE 1=2;

ALTER TABLE t

ADD CONSTRAINT pk_t

PRIMARY KEY (owner, table name)
USING INDEX;

ALTER TABLE t
ADD CONSTRAINT cc_t
CHECK (blocks < 11);

INSERT /*+ APPEND */ INTO t
SELECT *
FROM all tables;

* Provides a procedure that enables creating an error logging table so that DML
operations can continue after encountering errors rather than performing an

\\\\\\\‘

(o2}
(oe]

DBMS_ERRLOG ¢

META; Solutions for the Red Stack

exec

dbms errlog.create error log('T');

desc err$ t

INSERT /*+ APPEND */ INTO t
SELECT *

FROM all tables

LOG ERRORS

REJECT LIMIT UNLIMITED;

SELECT COUNT (*) FROM t;
COMMIT;

SELECT COUNT (*) FROM t;
SELECT COUNT (*) FROM err$ t;
set linesize 121

col table name format a30

col blocks format a7
col ora_grr_mesg$ format a60

SELECT ora_err mesg$, table name,

blocks
FROM err$_t;

\\\\\\\‘

69

DBMS_STATS: Statistics

= System Stats
* Fixed Object Stats
= Dictionary Stats

= Set stats for new partitions
so that when inserts take
place the optimizer knows
what you are inserting

META; Solutions for the Red Stack

SQL> exec dbms_stats.gather system stats('INTERVAL', 15);

SQL> SELECT * FROM sys.aux stats$;

SYSSTATS INFO
SYSSTATS INFO
SYSSTATS INFO
SYSSTATS INFO
SYSSTATS MAIN
SYSSTATS MAIN
SYSSTATS MAIN
SYSSTATS MAIN
SYSSTATS MAIN
SYSSTATS MAIN
SYSSTATS MAIN
SYSSTATS MAIN
SYSSTATS MAIN

STATUS
DSTART
DSTOP
FLAGS
CPUSPEEDNW
IOSEEKTIM
IOTFRSPEED
SREADTIM
MREADTIM
CPUSPEED
MBRC
MAXTHR
SLAVETHR

PVAL1

4096
3.862
1.362

2854

17

PVAL2

COMPLETED

05-27-2015 09:45
05-27-2015 09:51

\\\\\\\‘

~
o

DBMS_ STATS: Processing Rate .

META; Solutions for the Red Stack

Processing Rate collection is new as of version 12cR1

Besides the amount of work the optimizer also needs to know the HW
characteristics of the system to understand how much time is needed to
complete that amount of work

Consequently, the HW characteristics describe how much work a single
process can perform on that system, these are expressed as bytes per second
and rows per second and are called processing rates

As they indicate a system's capability it means you will need fewer processes
(which means less DOP) for the same amount of work as these rates go
higher; the more powerful a system is, the less resources you need to process
the same statement in the same amount of time

Processing rates are collected manually

SQL> exec dbms_stats.gather processing rate('START', 20);

SQL> SELECT operation name, manual value, calibration value, default value
2 FROM vSoptimizer processing rate
3 ORDER BY 1;

\\\\\\\‘

\‘
[ERN

DBMS_ STATS: Processing Rate e

OPERATION NAME MANUAL VAL CALIBRATIO DEFAULT VA
AGGR 1000.00000
ALL 200.00000
CPU 200.00000
CPU_ACCESS 200.00000
CPU_AGGR 200.00000
CPU_BYTES PER SEC 1000.00000
CPU_FILTER 200.00000
CPU_GBY 200.00000
CPU_HASH_JOIN 200.00000
CPU_IMC BYTES PER SEC 2000.00000
CPU_IMC ROWS PER SEC 2000000.00
CPU_JOIN 200.00000
CPU_NL_JOIN 200.00000
CPU_RANDOM ACCESS 200.00000
CPU_ROWS_PER SEC 1000000.00000
CPU_SEQUENTIAL ACCESS 200.00000
CPU_SM_JOIN 200.00000
CPU_SORT 200.00000
HASH 200.00000
I0 200.00000
IO ACCESS 200.00000
IO BYTES PER SEC 200.00000
IO IMC_ACCESS 1000.00000
IO _RANDOM ACCESS 200.00000
IO _ROWS_PER SEC 1000000.00000
IO SEQUENTIAL ACCESS 200.00000
MEMCMP 500.00000
MEMCPY 1000.00000

SQL> exec dbms_stats.set processing rate('IO', 100);

META; Solutions for the Red Stack

\\\\\\\‘

72

INSERT Statement Most Common Error

= |f you do not name columns DDL can break your statement and not doing so
will use a less efficient code path

INSERT INTO <table_name>

VALUES
(<comma separated value list>);

CREATE TABLE state (
state_abbrev VARCHAR2 (2),
state name VARCHARZ2 (30) ,
city name VARCHARZ2 (30)) ;

INSERT INTO state
(state_abbrev, state name)
VALUES

('"NY', 'New York');

INSERT INTO state
VALUES
('NY', 'New York');

META; Solutions for the Red Stack

\\\\\\\‘

~
w

‘Zé

Wrap Up

Conclusion

= How comfortable are you with your knowledge of UPDATE and DELETE
statements?

» The most important principle in INSERT statements, and everything else in
Oracle is "do the least work"
= Minimize CPU utilization
Minimize 1/O
= Take the load off the storage array
= Off the HBA cards
= Off the SAN switch
= Off the Fibre
Minimize network utilization
= Bandwidth
= Round Trips
Minimize your memory footprint

META; Solutions for the Red Stack

\\\\\\\‘

~
a1

*

ERROR at line 1:
ORA-00028: your session has been killed

Thank You

META/

A Division of Forsythe

Daniel A. Morgan Solutions for the Red Stack

email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorganllg

twitter: @meta7solutions

