TECH DAY

l . "m .
Atlanta, GA Georg'a March 2 14

: “Oracle Insert Statements——
for DBAs and Developers

Daniel A. Morgan
email: dmorgan@forsythe.com
mobile: +1 206-669-2949

: skype: damorganllg
Thursday: March 3, 2016 twitter: @meta7solutions

i

Introduction

Daniel Morgan

& Oracle ACE Director

= Oracle Educator
. Curriculum author and primary program instructor at University of Washington
9 Consultant: Harvard University
= University Guest Lecturers
= APAC: University of Canterbury (N2)
= EMEA: University of Oslo (Norway)
= Latin America: Universidad Latina de Panama and Technologico de Costa Rica
* |T Professional
= First computer: IBM 360/40 in 1969: Fortran IV
= QOracle Database since 1988-9
= Beta Tester 10g, 119, 12c, TimesTen, GoldenGate
= The Morgan behind www.morganslibrary.org
= Member Oracle Data Integration Solutions Partner Advisory Council
» Co-Founder International GoldenGate Oracle Users Group

= Principal Adviser: Forsythe Meta’/

System/370-145 system console

META7 email: dmorgan@forsythe.com
Solutions for the Red Stack Twitter: @damorganl2c

My Websites: Morgan's Library

Morgan's Library - T
Morgan®s Library S O

International Oracle Events 2015-2016 Calendar
May Jun Jul Aug Sep Oct How Dec Jan ‘
The library is a spam-free on-line resource with code demos for DBAs and Developers.
If you would like to see new Oracle database funtionality added to the library ... just email us.
Oracle 12.1.0.2.0 has been released and new features will be showing up for many weeks.
The first updates have already been made.

Hon ' MadDog Morgan Training Events and Travels Oracle Events

o ™ 10UG, Chicago, Iilinois - Mar 10

Resources ey —
Lieary o "5 uTOUG. Sait Lake City, Utah - Mar 11.12 L2 G
Hou Can1? * iS QUGH, Oslo, Nonway - Mar 12-14 % ¥

o M collaborate, Las Veqas, Nevada - Apr 12-16 "

o ™ nYoUuG, Now York, NY - May 18
. GLOC, Cleveland, Ohio - May 19-20

Next Event: 27 January, Redwood Shores, CA Click on the map to find an event near you
Library News ACE News
* Morgan's Blog ’

@ Would you like to become an Oracle ACE? A
® Join the Western Washi n OUG
. P Learn more about becoming an ACE
Morgan's Oracle Podcast
| * US Govt Mil. STIGs (Security Checklists) ® ACE Directory
® Bryn Llewellyn's PL/ISQL White Paper ® ACE Gooale Map
. 's Editioni i ® ACE Program
aboard USA-71 ® Explain Plan White Pa ® Stanley's Bl
A ORACLE' ~ Congratulations to our newest
[ACE Director ACE Director Jim Czuprynski
”’ AREDECINT SANS FRONTMRES
{ DOCTORS WITHOUT BORDERS

www.morganslibrary.org

META; Solutions for the Red Stack

My Websites: International GoldenGate Oracle Users Group

e U

o Q0ug.org | 8- P ¥+ A 8B w- 0O %
3 oudduaGe B Google Emal Humor News Orade Scence Headires 11.2 Updated Books 12, 1 Updated Books

International GoldenGate Oracle Users Group

Oracle GG Documentation
11 2.1 GoldenGate
11 111 GoldenGate
1111 GoldenGate
10.4 GoldenGate

Oracle abase

Blogs & Links

Bilogs, links, sample code, and
tncks & traps focusing on GoldenGate

SOS: Support Our Sponsors
We want to thank our supperters and

sponsors for making this webse possible
Please support them too

META; Solutions for the Red Stack

Welcome to the GoldenGate Users Group. We are creating a
technical community to provide a focus for the international
community involved in deploying and configuring Oracle’s
GoldenGate software.

Please read our editor’s page to find out more about our
goals

Click Here
If you would like to become one of our community's founding

members click on the "Members™ link below. We will have
application forms posted very soon that you can submit.

If you have links to content you have written, or content
written by others that you think would be of value to the
community, please email us the information so we can share
it

Our focus is GoldenGate Software not any specific database
vendor’'s product we will be looking for information about
projects with:

Oracle Sybase ASE
DB2 Teradata
sal Server and more

We look forward to meeting as many of you as possible at
our first meeting In San Francisco at OpenWorld 2014,

www.iggoug.org

2014 Organizational Meeting
i you will be in San Francisco for

OpenWorld please plan to meet with
us detais to be announced here soon

Training Progroms
IGGOUG provides independent

hands-on classes focusing using
Oracle, SQL Server and DB2

Py ms
nd An le ACE

Want to become an ACE too?
Contact our leadership team

Leadership Team

Our leadership team 15 here because of
thewr deckcation to the user community

Travel Log: 2010

META; Solutions for the Red Stack

Travel Log: 2013

META; Solutions for the Red Stack

Travel Log: 2014

-) TR »
L4 Y -
C %% % &

N e

META; Solutions for the Red Stack

Oracle Version Numbering

@ Soferl Fle LoR View Matory Dockmards Window Meb

ene < D W02 W2

Database Cloud Self Service Portal
Create Database
() Database Configuration () instance Detads
Servce Mera” tew Oracie Da Tergate * Roguest Name SYSMAN - 11 Jan 19 2016 112198 €87
Doman ame S Zore Melel St Suwcwore Pud-lore L

* Dutabase Bervice Name Serice

Propectes
Master Account Neme Voo
© UooriName ayamen z » Opsonal
* Uner Panaword e
* Contiemn User Password o mm

o TP Tha same pasewond wil D6 osed for ol Scheman Crested B DAt of 1 regueet.
¥ 520t Do & 00t 15 “wrvmedanely”, T Smesone “Taster Standand Time fOMT 5001 wi be wsed for Bng Dute.

ODwrstien o ponteitey Lt

S L seesaomess ¥
ORACLE" Enterprise Mansger Cous Control 1

e n
S O mrwaatwy Later LTS 0000 N Yok « Emptern Tivw £T)

Illllll‘
WY

Daniel A. Morgan

email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorganllg

twitter: @meta7solutions

Technical Briefing:
KHow Do You Safeguard: the Database
Against.Today's Cyber Threats?

i

October 21, 2015

Daniel A. Morgan

email: dmorgan@forsythe.com
mobile: +1 206-669-2949 .’
skype: damorganllg

twitter: @meta7solutions

- Database
Partitioning .

'0(Pmeta7solutions

Oracle DBaaS Migration Road

»

BIWA SUMMIT 2016

The Oracle Big Data + Analytics User Conference
January 26-28, 2016

Rhetorical Question

= |f an operating room is not the right place to experiment ...

] w3 T

“ o Be S ,-a
- . A . R, -
o /fa) 2

= Should you trying things for the first time on a production environment?

META; Solutions for the Red Stack

15

Content Density Warning

Take Notes ... Ask Questions

META; Solutions for the Red Stack

16

Why Am | Focusing On INSERT Statements?

= Because no one else is

= Because Oracle University doesn't teach this material

= Because there are 17 pages in the 12c docs on INSERT

= Because almost no one knows the full syntax of basic DML statements

» Because we have now spent more than 30 years talking about performance
tuning and yet the number one conference and training topic remains
performance tuning which proves that we need to stop focusing on edge
cases and focus, instead, on the basics

= Because explain plans, AWR Reports, and trace files will never fix a problem if
you don't know the full range of solutions available

= Because the best way to achieve high performance is to choose techniques
that reduce resource utilization

The next presentation | will be delivering to user groups is tentatively titled: "You don't know how to install an Oracle Database ...
and neither does DBCA"

META; Solutions for the Red Stack

Insert Statements

SQL DML?

= DML stands for Data Manipulation Language

= DML is a direct reference to the following SQL statements
= INSERT
= UPDATE
= DELETE
= MERGE

META; Solutions for the Red Stack

19

SQL INSERT Statement Topics «2

= Basic Insert

= INSERT WHEN

= INSERT ALL

= INSERT ALL WHEN

= INSERT FIRST WHEN

= INSERT INTO A SELECT STATEMENT
= INSERT WITH CHECK OPTION

= View Inserts

= Editioning View Inserts

= Partitioned Table Insert

META; Solutions for the Red Stack

20

SQL INSERT Statement Topics .2

= Tables with Virtual Columns Insert
= Tables with Hidden Columns Insert
= Create Table As Inserts

= Nested Table Inserts

= VARRAY Table Inserts

= MERGE Statement Insert

META; Solutions for the Red Stack

21

PL/SQL INSERT Statement Topics

= Record inserts

* FORALL INSERTs

» FORALL MERGE Inserts

= LOB Inserts

= DBMS_SQL Dynamic Inserts

= Native Dynamic SQL Inserts

= RETURNING Clause with a Sequence

* RETURNING Clause with an Identity Column

META; Solutions for the Red Stack

22

Performance Tuning INSERT Statement Topics

= Too Many Columns

= Column Ordering

= Aliasing and Fully Qualified Names
= Implicit Casts

= APPEND hint

= APPEND_VALUES hint

= DBMS ERRLOG bullt-in package
" CHANGE DUPKEY ERROR INDEX hint
= IGNORE ON DUPKEY INDEX hint

= DBMS_STATS
= |nsert Statement Most Common Error

META; Solutions for the Red Stack

23

SQL Insert Statements

Basic INSERT Statement ¢

» Use this syntax to perform inserts into a single column in a heap, global
temporary, IOT, and most partitioned tables

INSERT INTO <table name>
(<column name>)

VALUES

(<value>) ;

CREATE TABLE state (
state abbrev VARCHAR2(2)) ;

INSERT INTO state
(state_abbrev)
VALUES

('NY") ;

COMMIT ;

SELECT * FROM state;

META; Solutions for the Red Stack

Basic INSERT Statement ¢

» Use this syntax to perform inserts into a single column in a heap, global
temporary, IOT, and most partitioned tables

INSERT INTO <table name>

(<column name>, <column name> [,...])
VALUES

(<value>, <value> [,<value>]) ;

CREATE TABLE state (
state_abbrev VARCHAR2 (2),
state name VARCHAR2 (30)) ;

INSERT INTO state
(state_abbrev, state name)
VALUES

('NY', 'New York');
COMMIT;

SELECT * FROM state;

META; Solutions for the Red Stack

26

INSERT WHEN

= Use this syntax to conditionally insert rows into multiple tables

INSERT

WHEN (<condition>) THEN
INTO <table name> (<column_list>)
VALUES (<values_list>)

WHEN (<condition>) THEN
INTO <table name> (<column_list>)
VALUES (<values_list>)

ELSE
INTO <table name> (<column_list>)
VALUES (<values_list>)

SELECT <column_list> FROM <table name>;

INSERT
WHEN (deptno=10) THEN
INTO emp 10 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)
WHEN (deptno=20) THEN
INTO emp 20 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)
WHEN (deptno=30) THEN
INTO emp 30 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)
ELSE
INTO leftover (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)
SELECT * FROM emp;

META; Solutions for the Red Stack

INSERT ALL

= Use this syntax to unconditionally insert data into multiple tables

= Note that columns can go into one target table, multiple target tables, or all
target tables

INSERT ALL
INTO <table name> VALUES <column name list)
INTO <table name> VALUES <column name list)

<SELECT Statement>;

INSERT ALL
INTO ap_cust VALUES (customer_id, program id, delivered date)
INTO ap_orders VALUES (order_date, program id)
SELECT program id, delivered date, customer_ id, order_ date
FROM airplanes;

META; Solutions for the Red Stack

28

INSERT ALL WHEN

= With "ALL", the default value, the database evaluates each WHEN clause

sequentially and can inserts with each row multiple times if there are multiple
matches

INSERT ALL
WHEN (<condition>) THEN
INTO <table name> (<column_ list>)
VALUES (<values_ list>)
WHEN (<condition>) THEN
INTO <table name> (<column_ list>)
VALUES (<values_list>)
ELSE
INTO <table name> (<column_ list>)
VALUES (<values_ list>) INSERT ALL
SELECT <column list> FROM <table name>;
— — WHEN (deptno=10) THEN
INTO emp 10 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)
WHEN (deptno=20) THEN
INTO emp 20 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)
WHEN (deptno<=30) THEN
INTO emp 30 (empno,ename,job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)
ELSE
INTO leftover (empno,ename, job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr,sal,deptno)
SELECT * FROM emp;

META; Solutions for the Red Stack

INSERT FIRST WHEN

= With "FIRST" the database evaluates each WHEN clause in the order in which
It appears in the statement and only performs an insert for the first match

INSERT FIRST

WHEN <condition> THEN

INTO <table name> VALUES <column name list)
INTO <table name> VALUES <column name list)

<SELECT Statement>;

INSERT FIRST
WHEN customer id < 'I' THEN

INTO cust_ah

VALUES (customer_ id, program id, delivered date)
WHEN customer id < 'Q' THEN

INTO cust_ip

VALUES (customer id, program id, delivered date)
WHEN customer id > 'PZZZ' THEN

INTO cust_qgz

VALUES (customer id, program id, delivered date)
SELECT program id, delivered date, customer id, order date
FROM airplanes;

META; Solutions for the Red Stack

30

INSERT Into a SELECT Statement

» Use this syntax to INSERT rows into a table a part of a SELECT statement
from itself or one or more different tables

INSERT INTO <table_name>
(<SELECT Statement>) ;

CREATE TABLE state (

zip code VARCHAR2 (5) NOT NULL,
state_abbrev VARCHARZ2 (2) NOT NULL,
city name VARCHAR2 (30)) ;

INSERT INTO (
SELECT deptno, dname, loc
FROM dept)
VALUES (99, 'TRAVEL', 'SEATTLE');

META; Solutions for the Red Stack

INSERT with Check Option

= Use this syntax to limit inserted rows to only those that pass CHECK OPTION
validation

INSERT INTO (
<SQL statement> WITH CHECK OPTION)

VALUES
(value list);

INSERT INTO (
SELECT deptno, dname, loc

FROM dept
WHERE deptno < 30 WITH CHECK OPTION)

VALUES (99, 'TRAVEL', 'SEATTLE');

META; Solutions for the Red Stack

32

INSERTINng into a View

= Evaluate whether a view column is insertable

= Views with aggregations, CONNECT BY, and other syntaxes may not be
Insertable

desc cdb_updatable columns

SELECT cuc.con_id, cuc.owner, cuc.insertable, COUNT (*)
FROM cdb_updatable columns cuc
WHERE (cuc.con_id, cuc.owner, cuc.table name) IN
(SELECT cv.con_id, cv.owner, cv.view_name
FROM cdb_views cv)
GROUP BY cuc.con_id, cuc.owner, cuc.insertable
ORDER BY 1,2,3;

CON_ID OWNER INS COUNT (*)
2 ORDSYS NO 4
2 ORDSYS YES 4
2 SYS NO 45190
2 SYS YES 22415
2 SYSTEM NO 172
2 SYSTEM YES 14
2 WMSYS NO 736
2 WMSYS YES 160

META; Solutions for the Red Stack

&8

INSERTINng into an Editioning View

= All editioning views are insertable ... but be sure you are in the correct edition

SQL> CREATE EDITION demo_ed;

SQL> CREATE OR REPLACE EDITIONING VIEW test AS
2 SELECT program id, line number
3 FROM airplanes;

View created.

SQL> ALTER SESSION SET EDITION=demo_ed;

Session altered.

SQL> CREATE OR REPLACE EDITIONING VIEW test AS
2 SELECT line number, program id
3 FROM airplanes;

View created.

SQL> SELECT * FROM user_ editioning views_ae;

VIEW_NAME TABLE NAME EDITION_ NAME
TEST AIRPLANES ORASBASE
TEST AIRPLANES DEMO_ED

META; Solutions for the Red Stack

INSERTINg into a Partitioned Table

= With HASH, LIST, and RANGE partitioning any INSERT statement will work
= With Partition by SYSTEM you must name the partition

CREATE TABLE syst part (
tx_id NUMBER(5),
begdate DATE)

PARTITION BY SYSTEM (
PARTITION pl1,

PARTITION p2,

PARTITION p3) ;

INSERT INTO syst part VALUES (1, SYSDATE-10);
*
ERROR at line 1:
ORA-14701: partition-extended name or bind variable must be used
for DMLs on tables partitioned by the System method
INSERT INTO syst part PARTITION (pl) VALUES (1, SYSDATE-10);
INSERT INTO syst part PARTITION (p2) VALUES (2, SYSDATE);
INSERT INTO syst part PARTITION (p3) VALUES (3, SYSDATE+10) ;

SELECT * FROM syst part PARTITION (p2);

META; Solutions for the Red Stack

INSERTINng into a Binary XML Partitioned Table

CREATE TABLE orders OF XMLType

XMLTYPE STORE AS BINARY XML

VIRTUAL COLUMNS (SITE ID AS (XMLCast (XMLQuery ('/Order/@SiteId' PASSING OBJECT VALUE RETURNING CONTENT) AS NUMBER)))
PARTITION BY RANGE (site_id) (

PARTITION pl VALUES LESS THAN (10),

PARTITION p2 VALUES LESS THAN (20),

PARTITION pm VALUES LESS THAN (MAXVALUE)) ;

DECLARE
x XMLTYPE;
BEGIN
x := XMLTYPE ('<?xml version="1.0" encoding="utf-8"7?>
<Order orderId="1" orderRevision="1" orderTimeStamp="01-JAN-2012">
<OrderHeader>
<Alternatelds>
<AlternateId altIdType="Siteld">2</AlternateId>
<AlternateId altIdType="MerchantOrderNumber">Merch</AlternateId>
<AlternateId altIdType="MarketplaceOrderNumber">Place</AlternateId>
<AlternateId altIdType="CustomerReferencelId">Ref</AlternateId>
<AlternateId altIdType="CartId">Cart</Alternateld>
<Alternateld altIdType="SessionId">1</AlternatelId>
</Alternatelds>
</OrderHeader>
</Order>"') ;
INSERT INTO orders VALUES (x);
END ;
/

META; Solutions for the Red Stack

36

INSERTINng into a JSON Partitioned Table

CREATE TABLE Jjson_orders (

tx_id NUMBER (5) ,

tx_date DATE,

jsondata VARCHAR2 (4000),

site_id AS (JSON_VALUE (jsondata, '$.siteId' RETURNING NUMBER)))
PARTITION BY RANGE (site_id) (

PARTITION pl VALUES LESS THAN (10),

PARTITION p2 VALUES LESS THAN (20),

PARTITION pm VALUES LESS THAN (MAXVALUE)) ;

INSERT INTO json_orders

(tx_id, tx date, jsondata)

VALUES

(1, SYSDATE, '{"Seattle": 1, "siteId": 9}');

INSERT INTO json_orders

(tx_id, tx date, jsondata)

VALUES

(2, SYSDATE, '{"New York": 2, "siteId": 11}');

META; Solutions for the Red Stack

INSERTINg into a Table With Virtual Columns

» Virtual columns will appear in a DESCRIBE statement but
yOU cannot insert values into them

CREATE TABLE vcol (

salary NUMBER (8) ,

bonus NUMBER (3) ,

total comp NUMBER(10) AS (salary+bonus)) ;

desc vcol

SELECT column_id, column_name, virtual column
FROM user_ tab_cols
WHERE table name = 'VCOL'

INSERT INTO vcol

(salary, bonus, total comp)
VALUES

(1,2,3);

INSERT INTO vcol
(salary, bonus)
VALUES

(1,2);

SELECT * FROM vcol;

META; Solutions for the Red Stack

INSERTINng into a Table with Invisible Columns

* [nvisible columns will not appear in a DESCRIBE statement but you can insert
Into them directly

CREATE TABLE vis (
rid NUMBER,
testcol VARCHAR2 (20)) ;

CREATE TABLE invis (
rid NUMBER,
testcol VARCHAR2 (20) INVISIBLE) ;

desc vis

desc invis

SELECT table name, column name, hidden_column

FROM user_ tab cols -- not found in
user_ tab columns

WHERE table name like '%VIS';

INSERT INTO invis

(rid, testcol)

VALUES

(1, 'TEST');

SELECT * FROM invis;

SELECT rid, testcol FROM invis;

META; Solutions for the Red Stack

CREATE TABLE as an INSERT Statement

= Use this syntax to create a new table as the result of a SELECT statement
from one or more source tables

CREATE TABLE <tab1e_name> AS
<SELECT Statement>;

CREATE TABLE column_subset AS
SELECT coll, col3, col5
FROM servers;

desc column_subset

SELECT COUNT (*)
FROM column_subset;

META; Solutions for the Red Stack

40

Nested Table Insert

= Cast column values using the object column's data type

CREATE OR REPLACE NONEDITIONABLE TYPE CourselList AS TABLE OF VARCHAR2 (64) ;
/

CREATE TABLE department (

name VARCHAR2 (20) ,

director VARCHAR2 (20),

office VARCHAR2 (20) ,

courses Courselist)

NESTED TABLE courses STORE AS courses_tab;

INSERT INTO department
(name, director, office, courses)
VALUES
('English', 'Tara Havemeyer',6 'Breakstone Hall 205', Courselist(
'Expository Writing',
'Film and Literature'’',
'Modern Science Fiction',
'Discursive Writing',
'Modern English Grammar',
'Introduction to Shakespeare',
'Modern Drama',
'The Short Story',
'The American Novel')) ;

META; Solutions for the Red Stack

VARRAY Table Insert

= Cast column values using the VARRAY column's data type

CREATE OR REPLACE TYPE ProjectList AS VARRAY (50) OF Project;
/

CREATE TABLE department (
dept id NUMBER(2),

dname VARCHAR2 (15) ,
budget NUMBER (11,2),
projects Projectlist) ;

INSERT INTO department

(dept_id, dname, budget, projects)

VALUES

(30, 'Accounting', 1205700,

ProjectList (Project(l, 'Design New Expense Report', 3250),
Project (2, 'Outsource Payroll',6 12350),

Project (3, 'Evaluate Merger Proposal', 2750),

Project (4, 'Audit Accounts Payable', 1425)));

META; Solutions for the Red Stack

MERGE Statement Insert

= Use MERGE statements where an insert or other DML action is conditioned
on the results of a SELECT statement result match

MERGE INTO bonuses b
USING (
SELECT employee id, salary, dept no
FROM employee
WHERE dept no =20) e
ON (b.employee id = e.employee id)
WHEN MATCHED THEN
UPDATE SET b.bonus = e.salary * 0.1
DELETE WHERE (e.salary < 40000)
WHEN NOT MATCHED THEN
INSERT (b.employee id, b.bonus)
VALUES (e.employee id, e.salary * 0.05)
WHERE (e.salary > 40000) ;

META; Solutions for the Red Stack

43

PL/SQL Insert Statements

Record Inserts

= Use this syntax to insert based on an array that matches the target table
rather than named individual columns

= Adding a new column to the table will not break the statement

CREATE TABLE t AS
SELECT table_name, tablespace_name
FROM all_ tables;

SELECT COUNT (*)
FROM t;

DECLARE
trec t%ROWTYPE;
BEGIN
trec.table name := 'NEW';
trec.tablespace name := 'NEW_TBSP';

INSERT INTO t
VALUES trec;

COMMIT;
END;
/

SELECT COUNT (*) FROM t;

META; Solutions for the Red Stack

45

FORALL INSERTS a3

= Use this syntax to greatly enhance
performance but be sure you
understand the concept of DIRECT
LOAD INSERTSs

= With this syntax | can insert
500,000 rows per second on
my laptop

= |Learn

Limits Clause

Save Exceptions
Partial Collections
Sparse Collections
In Indices Of Clause

META; Solutions for the Red Stack

CREATE OR REPLACE PROCEDURE fast way AUTHID CURRENT USER IS

TYPE myarray IS TABLE OF parent3%ROWTYPE;
1 data myarray;

CURSOR r IS
SELECT part _num, part name
FROM parent;

BatchSize CONSTANT POSITIVE := 1000;

BEGIN

OPEN r;
LOOP
FETCH r BULK COLLECT INTO 1 data LIMIT BatchSize;

FOR j IN 1 .. 1 data.COUNT LOOP
1l data(j) .part num := 1 data(]j) .part num * 10;
END LOOP;

FORALL i IN 1..1 data.COUNT
INSERT INTO child VALUES 1 data(i);

EXIT WHEN 1 data.COUNT < BatchSize;
END LOOP;
COMMIT;
CLOSE «r;

END fast way;

/

46

FORALL INSERTS ¢35

= Use this syntax to greatly enhance
performance but be sure you
understand the concept of DIRECT
LOAD INSERTSs

= With this syntax | can insert
500,000 rows per second on
my laptop

= |Learn

Limits Clause

Save Exceptions
Partial Collections
Sparse Collections
In Indices Of Clause

META; Solutions for the Red Stack

CREATE OR REPLACE PROCEDURE fast way AUTHID CURRENT USER IS
TYPE PartNum IS TABLE OF parent.part num$TYPE
INDEX BY BINARY INTEGER;

pnum_t PartNum;

TYPE PartName IS TABLE OF parent.part name$TYPE
INDEX BY BINARY INTEGER;

pnam_t PartName;

BEGIN
SELECT part_num, part name
BULK COLLECT INTO pnum t, pnam t
FROM parent;

FOR i IN pnum t.FIRST .. pnum t.LAST LOOP
pnum _t(i) := pnum t(i) * 10;
END LOOP;

FORALL i IN pnum_ t.FIRST .. pnum_t.LAST
INSERT INTO child
(part _num, part name)
VALUES
(pnum_t (i), pnam t(i));
COMMIT;
END fast way;
/

a7

FORALL INSERTS @3

Use this syntax to greatly enhance
performance but be sure you
understand the concept of DIRECT
LOAD INSERTSs

= With this syntax | can insert

500,000 rows per second on
my laptop

Learn

= Limits Clause

= Save Exceptions

= Partial Collections

= Sparse Collections

= |n Indices Of Clause

META; Solutions for the Red Stack

CREATE OR REPLACE PROCEDURE fast way AUTHID CURRENT USER IS
TYPE parent rec IS RECORD (

part num dbms_sql.number table,

part_name dbms_sql.varchar2 table) ;

p_rec parent_ rec;

CURSOR c IS
SELECT part num, part name FROM parent;

1 done BOOLEAN;
BEGIN
OPEN c;
LOOP
FETCH c BULK COLLECT INTO p rec.part num, p rec.part name
LIMIT 500;
1l done := c%NOTFOUND;

FOR i IN 1 .. p _rec.part num.COUNT LOOP
p_rec.part num(i) := p rec.part num(i) * 10;
END LOOP;

FORALL i IN 1 .. p rec.part num.COUNT
INSERT INTO child

(part_num, part name)

VALUES

(p_rec.part num(i) , p_rec.part name(i));

EXIT WHEN (1 _done);
END LOOP;
COMMIT;
CLOSE c;
END fast way;
/

48

FORALL MERGE Inserts

= Use this syntax to execute a MERGE statement using data in an array data
(most likely selected using BULK COLLECT)

CREATE OR REPLACE PROCEDURE forall_merge AUTHID CURRENT USER IS
TYPE ridVal IS TABLE OF forall_tgt.rid%TYPE

INDEX BY BINARY INTEGER;

1l data ridval;
BEGIN

SELECT rid BULK COLLECT INTO l_data

FROM forall src;

FORALL i IN 1 data.FIRST .. 1 data.LAST
MERGE INTO forall tgt ft
USING (

SELECT rid

FROM forall src fs

WHERE fs.rid = 1 data(i)) al
ON (al.rid = ft.rid)
WHEN MATCHED THEN

UPDATE SET upd = 'U'
WHEN NOT MATCHED THEN

INSERT (rid, ins, upd)

VALUES (1 _data(i), 'I', NULL);

COMMIT ;

END forall merge;
/

META; Solutions for the Red Stack

49

LOB Insert

= When creating LOB objects be "« siie srue;

dst_file BLOB;

sure to use SecureFiles and be i fiie smary_mvrecer;

retval VARCHAR2 (30) ;

Sure that you underStand BE:?::] file := bfilename ('CTEMP', 'sphere.mpg')
PCTVERSION, CHUNK, and
other storage parameters ALoEs

(1, EMPTY BLOB())

u Fallure tO UndeI‘Stand hOW RETURNING bcol INTO dst file;
LOBs process undo can result

INTO dst_file

IN massive waste of space EROM sct

FOR UPDATE;

dbms_lob.fileopen(src_file, dbms_lob.file readonly) ;

lgh_file := dbms_lob.getlength(src_file);

dbms_lob.loadFromFile(dst file, src_file, 1lgh file);

UPDATE sct
SET bcol = dst file
WHERE rid = 1;

dbms lob.setContentType (dst_file, 'MPG Movie');
retval := dbms_lob.getContentType (dst_file);
dbms_ output.put_line(retval) ;

dbms_lob.fileclose(src_file);
END load file;
/

META; Solutions for the Red Stack

50

DBMS_ SQL Dynamic Inserts

= DBMS_SQL is the legacy implementation of dynamic SQL in the Oracle
database introduced in version 7

CREATE OR REPLACE PROCEDURE single row_insert(cl NUMBER, c2 NUMBER, r OUT NUMBER) IS

c NUMBER;
n NUMBER;
BEGIN
c := dbms_sql.open_cursor;
dbms_sql.parse(c, 'INSERT INTO tab VALUES (:bndl, :bnd2) ' || 'RETURNING cl*c2 into :bnd3',6 2);

dbms_sql .bind variable(c, 'bndl', cl);
dbms_sql.bind variable(c, 'bnd2',6 c2);
dbms_sql.bind variable(c, 'bnd3', r);

n := dbms_sqgl.execute(c);

dbms_sql.variable value(c, 'bnd3', r); -- get value of outbind
dbms_sql.close_cursor(c) ;
END single_ row_insert;

/

META; Solutions for the Red Stack

51

Native Dynamic SQL Inserts

= Native Dynamic SQL has largely replaced DBMS_SQL as it is robust and
more easily coded

BEGIN

FOR i IN 1 .. 10000

LOOP
EXECUTE IMMEDIATE 'INSERT INTO t VALUES (:x)'
USING i;

END LOOP;

END;
/

META; Solutions for the Red Stack

52

RETURNING Clause with a Sequence

= Use this syntax to return values from an insert statement unknown to the
program inserting the row

INSERT INTO <table_name>
(column list)
VALUES
(values_list)
RETURNING <value_ name>
INTO <variable name>;

DECLARE
X emp.empno3TYPE;
r rowid;
BEGIN
INSERT INTO emp
(empno, ename)
VALUES
(seq_emp.NEXTVAL, 'Morgan')
RETURNING rowid, empno
INTO r, x;

dbms_output.put line(r);
dbms_output.put line (x);
END;
/

META; Solutions for the Red Stack

53

RETURNING Clause with an Identify Column

= Use this syntax to return values from an insert statement unknown to the
program inserting the row

CREATE TABLE idcoltab (
rec_id NUMBER GENERATED ALWAYS AS IDENTITY,
coltxt VARCHAR2 (30));

DECLARE
rid idcoltab.rec id3%TYPE;
BEGIN
INSERT INTO idcoltab
(coltxt)
VALUES
('Morgan')
RETURNING rec_id
INTO rid;

dbms_output.put_line(rid);
END;
/

META; Solutions for the Red Stack

54

RETURNING Clause with Native Dynamic SQL

= Use this syntax to return values from an insert statement created using Native
Dynamic SQL

DECLARE
sql stmt VARCHAR2 (128) ;
dno dept ret.deptno%TYPE;
BEGIN
sql stmt := 'INSERT INTO dept ret (deptno, dname, location) ' ||
'"'VALUES (seq.NEXTVAL, ''PERSONNEL'', ''SEATTLE'') ' ||
'RETURNING deptno INTO :retval';
EXECUTE IMMEDIATE sql_stmt RETURNING INTO dno;
dbms output.put line (TO_CHAR(dno)) ;
END;
/

META; Solutions for the Red Stack

Performance Tuning Insert Statements

Considerations

= Table structure
= |ndexes
= Triggers

= [tis always more efficient if you code it right once rather than making the
database fix it thousands or millions of times

META; Solutions for the Red Stack

57

Too Many Columns

Oracle claims that a table can contain up to 1,000 columns: It is not true. No
database can do 1,000 columns no matter what their marketing claims may be

The maximum number of real table columns is 255

Break the 255 barrier and optimizations such as advanced and hybrid
columnar compression no longer work

A 1,000 column table is actually four segments joined together behind the
scenes just as a partitioned table appears to be a single segment but isn't

Be suspicious of any table with more than 50 columns. At 100 columns it is
time to take a break and re-read the Codd-Date rules on normalization

Think vertically not horizontally

Be very suspicious of any table with column names in the form "SPARE1",
"SPAREZ2", "..."

The more columns a table has the more cpu is required when accessing

columns to the right (as the table is displayed in a SELECT * query ... or at the bottom if the table is
displayed by a DESCribe)

META; Solutions for the Red Stack

58

Column Ordering a)

= Computers are not humans and tables are not paper forms

= Column retrieval cost

= Qracle stores columns in variable length format
= Each row is parsed in order to retrieve one or more columns

» Each subsequently parsed column introduces a cost of 20 cpu cycles regardless of
whether it is of value or not

» These tables will be accessed by person_id or state: No one will ever put the
address2 column into the WHERE clause as a filter ... they won't filter on

middle initial either

CREATE TABLE customers (
person_id NUMBER,

first name VARCHARZ2(30) NOT NULL,
middle init VARCHAR2 (2),

last name VARCHAR2 (30) NOT NULL,

addressl VARCHAR2 (30) ,
address2 VARCHAR2 (30) ,
city VARCHAR2 (30) ,
state VARCHAR2 (2)) ;

Common Design

CREATE TABLE customers (
person_id NUMBER,

last_name VARCHAR2 (30)
state VARCHAR2 (2)
city VARCHAR2 (30)

first name VARCHAR2 (30)

addressl VARCHAR2 (30) ,
address2 VARCHAR2 (30) ,
middle_init VARCHAR2(2)) ;

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

Optimized Design

META; Solutions for the Red Stack

59

Column Ordering e

= Proof column order matters

CREATE TABLE read test AS

SELECT *

FROM apex 040200.wwv_flow_page plugs
WHERE rownum = 1;

SQL> explain plan for
2 select * from read test;

PLAN TABLE OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time
| 0 | SELECT STATEMENT | | 1| 214K| 2 (0)| 00:00:01 |
| 1 | TABLE ACCESS FULL| READ_TEST | 1| 214K| 2 (0)| 00:00:01 |

-- fetch value from column 1

Final cost for query block SEL$1 (#0) - All Rows Plan:
Best join order: 1
Cost: 2.0002 Degree: 1 Card: 1.0000 Bytes: 13
Resc: 2.0002 Resc _io: 2.0000 Resc_cpu: 7271
Resp: 2.0002 Resp io: 2.0000 Resc_cpu: 7271

-- fetch value from column 193

Final cost for query block SEL$1 (#0) - All Rows Plan:
Best join order: 1
Cost: 2.0003 Degree: 1 Card: 1.0000 Bytes: 2002
Resc: 2.0003 Resc_io: 2.0000 Resc_cpu: 11111
Resp: 2.0003 Resp io: 2.0000 Resc_cpu: 11111

META; Solutions for the Red Stack

60

Aliasing and Fully Qualified Names

= When you do not use fully qualified names Oracle must do the work for you
= You write code once ... the database executes it many times

SELECT DISTINCT s.srvr_id
FROM servers s, serv_inst i
WHERE s.srvr_id = i.srvr_id;

SELECT DISTINCT s.srvr id
FROM uwclass.servers s, uwclass.serv_inst i
WHERE s.srvr id = i.srvr_ id;

META; Solutions for the Red Stack

61

Implicit Casts

= Code that does not correctly define data types will either fail to run or run very
Inefficiently

The following example shows both the correct way and the incorrect way to
work with dates. The correct way is to perform an explicit cast

SQL> create table t (
2 datecol date);

Table created.

SQL> insert into t wvalues ('01-JAN-2016"') ;

1l row created.

SQL> insert into t values (TO_DATE('01-JAN-2016'))

1l row created.

META; Solutions for the Red Stack

62

Jonathan Lewis' Rules for Hints

1. Don't
2. If you must use hints, then assume you've used them incorrectly

3. On every patch or upgrade to Oracle, assume every piece of hinted SQL is going to do
the wrong thing.

Because of (2) above; you've been lucky so far, but the patch/upgrade lets you
discover your mistake

4. Every time you apply some DDL to an object that appears in a piece of hinted SQL
assume that the hinted SQL is going to do the wrong thing.

Because of (2) above; you've been lucky so far, but the structural change lets you
discover your mistake

META; Solutions for the Red Stack 63

APPEND Hint

» The APPEND hint enables direct-path INSERT if the database is running in
serial mode. The database is in serial mode if you are not using Enterprise

Edition. Conventional INSERT is the default in serial mode, and direct-path
INSERT Is the default in parallel mode

* In direct-path INSERT data is appended above the high-water mark potentially
Improving performance

INSERT /*+ APPEND */ INTO t
SELECT * FROM servers;

META; Solutions for the Red Stack

64

APPEND_VALUES Hint

Use this new 12c hint

Instructs the optimizer to
use direct-path INSERT
with the VALUES clause

If you do not specify this
hint, then conventional
INSERT Is used

This hint is only
supported with the
VALUES clause of the
INSERT statement

If you specify it with an
Insert that uses the
subquery syntax it is
ignored

META; Solutions for the Red Stack

SQL> EXPLAIN PLAN FOR
2 INSERT INTO t
3 VALUES
4 ('XYZ');

SQL> SELECT * FROM TABLE (dbms_xplan.display) ;

SQL> EXPLAIN PLAN FOR
2 INSERT /*+ APPEND VALUES */ INTO t
3 VALUES
4 ('XYZ');

SQL> SELECT * FROM TABLE (dbms_xplan.display) ;

INSERT STATEMENT | |
LOAD AS SELECT | T | | | | I
BULK BINDS GET | | |

65

CHANGE_DUPKEY_ERROR_INDEX Hint

= Use this hint to unambiguously identify a unique key violation for a specified
set of columns or for a specified index

= When a unique key violation occurs for the specified index, an ORA-38911
error Is reported instead of an ORA-00001

INSERT /*+ CHANGE DUPKEY ERROR INDEX(T,TESTCOL) */ INTO t

(testcol)
VALUES
('Aa");

META; Solutions for the Red Stack

66

IGNORE_ON_DUPKEY_INDEX Hint

* This hint applies only to single-table INSERT operations

* |t causes the statement to ignore a unique key violation for a specified set of
columns or for a specified index

= When a unique key violation is encountered, a row-level rollback occurs and
execution resumes with the next input row

= |f you specify this hint when inserting data with DML error logging enabled,
then the unique key violation is not logged and does not cause statement
termination

INSERT /*+ IGNORE ROW_ON DUPKEY INDEX (T, UC_T_TESTCOL)) */ INTO t
(testcol)
VALUES

(1)

META; Solutions for the Red Stack

67

DBMS_ERRLOG a2

* Provides a procedure that enables creating an error logging table so that DML
operations can continue after encountering errors rather than performing an
abort and rollback

= Tables with LONG, CLOB, BLOB, BFILE, and ADT data types are not

supported
» LOG ERRORS effectively it turns S S & AR
array processing into single row 1 tables
processing, so it adds an WHERE 1=2;
expense at the moment of ALTER TABLE t
inserting, even though it saves S e ey
you the overhead of an array UEE TR
rollback if a duplicate gets o onooEaTaT oo &
INto the data onathan Lewis) CHECK (blocks < 11);
INSERT /*+ APPEND */ INTO t
SELECT *
FROM all tables;

META; Solutions for the Red Stack

DBMS_ERRLOG ¢

exec
dbms errlog.create error log('T');

desc err$ t

INSERT /*+ APPEND */ INTO t
SELECT *

FROM all tables

LOG ERRORS

REJECT LIMIT UNLIMITED;

SELECT COUNT (*) FROM t;

COMMIT;

SELECT COUNT (*) FROM t;

SELECT COUNT (*) FROM err$_t;

set linesize 121

col table name format a30

col blocks format a7

col ora_err_mesg$ format a60
SELECT ora_err mesg$, table name,

blocks
FROM err$_t;

META; Solutions for the Red Stack

DBMS_STATS: Statistics

= System Stats

* Fixed Object Stats
= Dictionary Stats

= Set stats for new partitions SQL> SELECT * FROM sys.aux_stats$;

SQL> exec dbms_stats.gather system stats('INTERVAL', 15);

so that when inserts take SNAME PNAME PVALL PVAL2
place the optimizer knows SYSSTATS INFO STATUS COMPLETED
what you are inserting SYSSTATS INFO DSTART 05-27-2015 09:45
SYSSTATS INFO DSTOP 05-27-2015 09:51
SYSSTATS INFO FLAGS 0
SYSSTATS MAIN CPUSPEEDNW 3010
SYSSTATS MAIN IOSEEKTIM 10
SYSSTATS MAIN IOTFRSPEED 4096
SYSSTATS MAIN SREADTIM 3.862
SYSSTATS MAIN MREADTIM 1.362
SYSSTATS MAIN CPUSPEED 2854
SYSSTATS MAIN MBRC 17

SYSSTATS MAIN MAXTHR
SYSSTATS MAIN SLAVETHR

META; Solutions for the Red Stack

DBMS_ STATS: Processing Rate .

Processing Rate collection is new as of version 12cR1

Besides the amount of work the optimizer also needs to know the HW
characteristics of the system to understand how much time is needed to
complete that amount of work

Consequently, the HW characteristics describe how much work a single
process can perform on that system, these are expressed as bytes per second
and rows per second and are called processing rates

As they indicate a system's capability it means you will need fewer processes
(which means less DOP) for the same amount of work as these rates go
higher; the more powerful a system is, the less resources you need to process
the same statement in the same amount of time

Processing rates are collected manually

SQL> exec dbms_stats.gather processing rate('START', 20);

SQL> SELECT operation name, manual value, calibration value, default value
2 FROM vSoptimizer processing rate
3 ORDER BY 1;

META; Solutions for the Red Stack

71

DBMS_ STATS: Processing Rate e

OPERATION NAME MANUAL VAL CALIBRATIO DEFAULT VA
AGGR 1000.00000
ALL 200.00000
CPU 200.00000
CPU_ACCESS 200.00000
CPU_AGGR 200.00000
CPU_BYTES PER SEC 1000.00000
CPU_FILTER 200.00000
CPU_GBY 200.00000
CPU_HASH_JOIN 200.00000
CPU_IMC BYTES PER SEC 2000.00000
CPU_IMC ROWS PER SEC 2000000.00
CPU_JOIN 200.00000
CPU_NL_JOIN 200.00000
CPU_RANDOM ACCESS 200.00000
CPU_ROWS_PER SEC 1000000.00000
CPU_SEQUENTIAL ACCESS 200.00000
CPU_SM_JOIN 200.00000
CPU_SORT 200.00000
HASH 200.00000
I0 200.00000
IO ACCESS 200.00000
IO BYTES PER SEC 200.00000
IO IMC_ACCESS 1000.00000
IO _RANDOM ACCESS 200.00000
IO _ROWS_PER SEC 1000000.00000
IO SEQUENTIAL ACCESS 200.00000
MEMCMP 500.00000
MEMCPY 1000.00000

SQL> exec dbms_stats.set processing rate('IO', 100);

META; Solutions for the Red Stack

72

INSERT Statement Most Common Error

= |f you do not name columns DDL can break your statement and not doing so
will use a less efficient code path

INSERT INTO <table_name>

VALUES
(<comma separated value list>);

CREATE TABLE state (
state_abbrev VARCHAR2 (2),
state name VARCHARZ2 (30) ,
city name VARCHARZ2 (30)) ;

INSERT INTO state
(state_abbrev, state name)
VALUES

('"NY', 'New York');

INSERT INTO state
VALUES
('NY', 'New York');

META; Solutions for the Red Stack

Wrap Up

Conclusion

= How comfortable are you with your knowledge of UPDATE and DELETE
statements?

» The most important principle in INSERT statements, and anything else In
Oracle is "do the least work"
= Minimize CPU utilization
= Minimize I/O
= Take the load off the storage array
= Off the HBA cards
= Off the SAN switch
= Off the Fibre
Minimize network utilization
= Bandwidth
= Round Trips
Minimize your memory footprint

META; Solutions for the Red Stack

75

*

ERROR at line 1:
ORA-00028: your session has been killed

Thank You
From Meta/

Daniel A. Morgan

email: dmorgan@forsythe.com
mobile: +1 206-669-2949
skype: damorganllg

twitter: @meta7solutions

META/

A Division of Forsythe

